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« Understanding to polygenic scores (PGS)

« Basic method to construct PGS

« Bayesian methods [15min Lecture | 15min Practical | Smin break ]

« Using GWAS summary statistics [15min Lecture | 15min Practical | 5min break |

» |Incorporating functional genomic annotations [15min Lecture | 15min Practical]

« Wrap-up/discussion/questions

Practical exercises will use a toy example and R scripts

All materials are available aft:

https://gctbhub.cloud.edu.au/data/teaching/



https://gctbhub.cloud.edu.au/data/teaching/

Polygenic scores (PGS) 0 L
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Polygenic scores (PGS) predict individual genetic values of complex traits using genome variations.

Polygenic risk scores (PRS) are predictors of the genetic susceptibilities of individuals to diseases.
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Common diseases are polygenic 0 L
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Many polygenic genetic architectures
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Polygenic disease for an individual
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Polygenic disease for an individual
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Polygenic score
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Polygenic score

» “True” polygenic score

Noft all variants captured
on genotyping arrays

V(A) o
Genetic variance between people affributed to all genetic factors V(A) h? = ) heritability

V(A: SNP)
h.%NP = hé = V(P)
SNP — based heritability

Genetic variance between people attributed to all genetic factors
associated with SNPs on genotyping arrays



Limitations in prediction accuracy

L/
0‘0

PGS have a theoretical upper limit dependent on the heritability of
the trait (how much of the variance of trait values between people is
attfributed to genetic factors).

PGS have a technical upper limit associated with the proportion of
variance tagged by the DNA variants measured.

PGS have a practical upper limit dependent on the sample size of
the discovery sample used to estimate effect sizes of risk alleles, and
the quality of the discovery sample.

PGS can be pushed closer to the technical upper Imit by the
statistical methodology used to generate the optimal weighting
given to the risk alleles, and new methods integrate new biological
data.

THE UNIVERSITY
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I 1

1 hSnp
] R2

Schizophrenia

Max:
25% Liability
AUC 0.84

Current:
11% Liability
AUC 0.74

Polygenic scores cannot
be highly accurate
predictors of phenotypes
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Basic method for PGS



Polygenic scores (PGS) e
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« A weighted count of risk alleles
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| I N PGS = le\ 2x12 +183x13 = SNP,B]xl]
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1=

log* (#)

O, 1or 2 Which SNPs2
| I H Risk alleles
V03 What weights?
3. mwmnmmampmmrwm
LT 1"”‘"""1‘ ‘¢- « Don’t need to know causal variants for prediction!
.  Prediction can be based on correlated variants.
A 4. Evaluate AUC statistic:
4. mmmsmumm 5 &nﬁ?gﬂgﬁ%ﬁ:&m@x Y: b*PGS + e

Probability that a case ranks
A S O M P o g e R? = var(b*PGS)/Var(Y) higher than a control 19



PGS methods
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A weighted sum of the count of risk alleles

. _ _— How many SNPs?
PGS = Bixi1 + BaXiz + Baxiz + - = X217 BiXij  \which SNPs2

What weightse
Basic method:

b PG+M 5202964
. . 1 rs967823
Clumping & P-value thresholdin
* 19:18793695
0 f5215!1594 rs12631337 152523589 ¢
[ ]
(C + PT) . rs61787782"514°0788 & rs62435650
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£ | 12064884 e rs149140438)
) rs13097265 * 3863241
W g 729156554 ¢ = : .
o rs * rs1873914 14:103333187
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A weighted sum of the count of risk alleles

. _ _ Nenp A How many SNPs¢
PGS = Bixis + BoXiz + Baxis + - = LN BiXij  \wiich SNpes
What weightse
Basic method:
Clumping & P-value thresholding 7
(C+PT): ’
QZOO ......

« Select most associated SNP in
tower — LD-based clumping

« Select on a p-value threshold 0
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A weighted sum of the count of risk alleles

. _ _— Nenp A How many SNPs?
PGS = fixiy + Baxia + Paxiz + - = X2 Bixij  \Which SNPse
What weightse

Basic method.:

0.20

Clumping & P-value thresholding
(C+PT):

o
—
(8]

—logyg model
P —value

20
15
10
5

PRS model fit: R?
o
=

« Select most associated SNP in
tower — LD-based clumping

. : 65%
.---

X N N
\Z"b \QJ RN QQ@ < QG)

P —value threshold (Pr)

« Select on a p-value threshold
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A weighted sum of the count of risk alleles

. _ _ Nenp A How many SNPs¢
PGS = Bixiy + Baxia + Paxiz + - = ;27" Bixij  \Which SNPse
What weightse

New methods model
genetic architecture

L Dpred-Inf LDPred? BSLMM SBayesR
SBLUP /\ SBayesC /A\




PGS methods T Uiy

Table 1. Summary of Methods Used to Generate Polygenic Scores

Tuning Predefined Parameters Estimated in Arc h iva I R e p o rt Eis‘i,'é’ﬁ'ii:fr'y

Method Distribution of SNP Effects (f) Sample Parameters Tuning Sample
PC+T None Yes - p-value threshold
SBLUP 2 No 2 -
h;
B~N (o.ﬁ) LD radius in kb
h2: SNP-based heritability, m: number of SNPs; 2 = m(1 — h2)/h2 C 1 H S
g g ALl A Comparison of Ten Polygenic Score Methods
Ldpred2-Inf Same as SBLUP No hg - - - - - -
L6 raivs i oM or o for Psychiatric Disorders Applied Across Multiple
LDpred-funct B;~N (0,ca?) No hg -
u ) , B . LD radius in number of COhorts
21 1nf>0°"j = h;, ¢ is a normalizing constant, oj is the expected SNPs
=
per SNP heritability under the baseline-LD annotation model . T . e . . .
estimated by stratified LDSC from the discovery GWAS within Guiyan Nl, Jlgn Zeng, Joana A. Revez, Ying Wang, Zhili Zheng, Tian Ge, Restuadi F_lestuadl,_
LDpred-funct software Jacqueline Kiewa, Dale R. Nyholt, Jonathan R.l. Coleman, Jordan W. Smoller, Schizophrenia
LDpred?2 2 Yes 2 ., sparsity Working Group of the Psychiatric Genomics Consortium, Major Depressive Disorder Working
N (0‘—9) with probability of w software default Group of the Psychiatric Genomics Consortium, Jian Yang, Peter M. Visscher, and
) ~ wm values, LD radius in Naomi R Wray
0, with probability of 1 — cMor kb
When sparsity is “true,” the 6[ for SNPs in the (1 — ) partition are
all set to zero
Lassosum f(B) =yTy+(1 — s)B'XIX,B — 2B"Xy-+sB"B+2 4B/} Yes LD blocks s
X;: n X m matrix of genotypes of LD reference sample, where n is o - - - -
; c o J
sample size © > 0.10
PRS-CS ) Yes a=1,b=05 ¢ sE= >
B~N (o.";\a,) n > 2009 g
LD blocks © = 0.08 /
c £ /
4~G (a,6) S 5 0.07 /
6i~G (b,¢),¢ is a global scaling parameter = 8 ’ %
2 £ 0.06 ; /
PRS-CS-auto Same as PRS-CS, but estimates ¢ from the discovery GWAS No a=1,b=05 - 09_ ?Q(_ 0.05 ! /
n )
LD blocks
SBayesR 0. with probabilty of No LD radiusin cM or kb - S 4 C
C=4 =
N (0,720%), with probability of v software default _E 35 T
Bl 03~1 values o8
c-1 53 30 ‘
N (0,7,0%), with probability of 1 — Z e
=
ag~Inv — x* (df. = 4) .
m; ~Dir(1), estimated from discovery GWAS in SBayesR software o R d r r ] ff 'I' r r l d | f d ff 'I'
v; are scaling parameters O n O e ec S O e S > |Xe e e C S
MegaPRS Lasso: ;~DE (4 /aj) Yes LD radius in cM The tuning cohort is used to
Ridge regression: 3, ~N (0,vo?) or kb estimate the parameters m d |
! ! ) Parameters used that maximize prediction O e S
(1—1fp)af ) . in BLD-LDAK for each model, and from
N (O' T )’th probability of © Grid search parameter  these the model that
BOLT-LMM: §;~ values for each maximizes prediction is

(o) gty 1< *  Mixture models > non-mixture

f, is the proportion of the total mixture variance in the second normal ° ° ° °
(infinitesimal) models
BayesR: similar to SBayesR with C = 4, and @; and v; estimated in the
tuning sample
u,z is the expected per SNP-heritability under BLD-LDAK model using
SumHer
- 18
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Bayesian methods

« Bayesian methods can estimate all parameters including SNP effects
simultaneously

« Allow alternative assumptions regarding the distribution of SNP
effects

» Different Bayesian methods mainly differ in
« Assumption of the SNP effect distribution

* Implementation

20



Assumptions for SNP effect distribution 0 S
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Infinite number of small effects Normal distribution BLUP/LDpred2-inf

Small number of moderate to large Student’s t distribution,
effects, many small effects hierarchical distribution > oY SSA/PRS-CS

Small number of small effects, many Mixture, splkg at .zero, L Dpred2/BayesC
zero effects normal distribution

Many zero effects, proportion of small
effects, some moderate to large effects

Mixture, multiple normals BayesR

21



Assumptions for SNP effect distribution 0 S
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BayesC BayesR

How fo incorporate this prior knowledge in the estimation of SNP effecftse

22



Infroduction to Bayesian methods O S
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Bayes theorem

P(x|y)oc P(y|x)P(x)

R

Probability of Is proportional to Probability of ~ Prior
parameters x given data y given the probability
the data y (posterior) X (likelihood of of x

data)

23



Infroduction to Bayesian methods O S
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Consider an experiment where we measure height of 10 people
to estimate average height

We want to use prior knowledge from many previous studies that
average heightis 174cm with standard error 5cm

y = average height + e

24



Infroduction to Bayesian methods

Bayes theorem

P(x|y)oc P(y|x)P(x)

|

Prior probability of x (average height)

0.09

0.08 |
0.07 |
0.06 |

2 005 |

1))

8 0.04
0.03 |
0.02 |

0.01 1

0 \
160 165 170 175 180 185 190
Height 25




Infroduction to Bayesian methods O S
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Bayes theorem

P(x|y)oc P(y|x)P(x)

/Prior;)robability of x (average height)
From the data......

0.09

0.08 |
T 0.07 |
X — 1 7 8 0.06 |
2 0051

2
S e — 5 8 004
) 0.03

0.02 +

0.01 1

0 \
160 165 170 175 180 185 190
Height 26
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Infroduction to Bayesian methods

Bayes theorem

P(x|y)oc P(y|x)P(x)

Likelihood of data (y) given / [

height x, most likely x = 178cm  Prior probability of x (average height)

0.09 0.09
0.08 - 0.08
0.07 A 0.07 -
0.06 - 0.06 ~
> d
< 0.05 = 0.05
> o
= 0.04 a 0.04 4
0.03 0.03 4
0.02 | 0.02
0.01 0.01 1
0 - - - - - 0 1 T T T T T f

Height Height 27



Infroduction to Bayesian methods 0 St

...... ALIA

Bayes theorem

P(x|y)oc P(y|x)P(x)

[l

P(x|y) mean = 176¢cm L(y|x) P(x)

28

Height Height Height



Infroduction to Bayesian methods

Less certainty about prior information? Use /ess informative (flat) prior

P(x|y)oc P(y|x)P(x)

[l

P(x|y) mean = 178cm L(y|x) P(x)

000000

i Height 29
Heigt ~  Height



Infroduction to Bayesian methods

More certainty about prior information? Use more informative prior

P(x|y)oc P(y|x)P(x)

[l

P(x|y) mean = 174.5cm L(y|x) P(x)

30

Height Height Height



Model

y=1u+Xp + e

(~ N(O,G‘%)

(=0

with probability

with probability 1 — «

&)

THE UNIVERSITY
OF QUEENSLAND

...... ALIA

31
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Posterior inference on SNP effects

P P P
B < POIBP®) (et mn
B;

' =0 with probability 1 — 7
n - X —X ?
x (62) 2 expi — b A) (Zy ﬁ) (aﬂz) 2 exp —'8— T+ @o(1—m)

SNP effect estimates: / \
B=E@ly) = | BPBIYWB

0
_ J j (ag)—%exp{—(y_xﬁz);;y_xm}ﬁ

—%] T+ @o(1— ﬂ)‘ dfy ...dBm

32
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Posterior inference on SNP effects

—~ —XB) (v —-X m 2
R R R e m}]_[[(ag)%xp{ B}nwo(l—n)‘dﬁl Ay

j=1

« Cannot solve directly =2 no closed form solution
« Estimates of parameters depend on other parameters

« Use Markov chain Monte Carlo (MCMC) algorithm!

33



MCMC algorithm 0 ey

AUSTR ALIA

Markov chain

A sequence of samples where each sample depends only on the
previous one (memoryless). This property allows the algorithm to
gradudally explore the distribution.

Monte Carlo

Using random sampling to perform numerical estimation, €.g.,
integrating over a probability distribution by averaging over samples.

34
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MCMC algorithm 0 ey

Gibbs Sampling

A special case of MCMC to sample from posterior distribution of each
parameter conditional on all other parameters.

Hy Ly

I £

The key is to derive P(x{|x,) and P(x,|x;)

Figure source

35


https://mikelove.wordpress.com/2008/09/08/visual-explanation-of-gibbs-sampling/

THE UNIVERSITY
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To run Gibbs sampling, we need to derive the full conditional
distribution for each parameter

» P(uly, B, o3, 02) y=1u+ Xp + e
* P('B]‘y’ _j’o-ﬁ’n O-e) ~ N(0,03) with probability =
B;
* P(O-,Bz‘y’ﬁ T, O¢ ) {—U with probability 1 —

. P(n|y, B, aﬁ, c?2)
+ P(cZ|y,B, o, m)

36
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Gibbs sampling
- Set starting values for (u, 8, B, o3, 7, o)
« Then (for many iterations)
- Foreach SNP, sample §;, ; conditional on other parameters

» Sample u, o3, m, oZ with updated &, B

Samples reconstruct posterior distributions of parameters

37
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Gibbs Sampling

For example, for SNP effect g;
- First sample if in zero or nonzero effect component of distribution
(67)
- Then if in nonzero component of the distribution, sample from

X]" (y—1,u— Zk;tj X Br)

2 ' 2 7.2
X’-Xj _I_W,Ue /(ijj + 0; /Uﬁ)
Jj

0.2
0.15 +
0.1 4
0.05
T T ©
-3 -2 -1 o]
EEEEE

Introduce shrinkage
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Gibbs sampling

Trace plof Posterior distribution
(l) 2(l)0 4(l)0 6(l)0 8(IJO ‘lOIOO ° 1f5 2{0 2f5 3_IO

lteration

Posterior mean is used as the point estimate of the SNP effect
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As a method of fine-mapping

Posterior inclusion probability (PIP):
probability that the SNP is included in the model with a nonzero effect.

1.0

0.6

Posterior inclusion probability
0.4

0.2

SNP 0
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Model
y=1u+Xp + e
(0 with probability
~ N(0,y,03) withprobability ,,
/3]'|7T7 O-[i’ =9 .
_~ N(0, ycaé) with probability 1 — S0 ! 7,

y=(0,0.01, 0.1, 1.0)’

BayesC is a special case of BayesR with two components

41



Why use multi-normal mixture?

B ~ my + 1, {\ + 173 + 1y

e

A || A

Account for almost any distribution!
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Practical Exercise Part 1: BayesR

https://gctbhub.cloud.edu.au/data/teaching/
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Bayesian methods using GWAS summary statistics
(sumstats)
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Motivation 0 B
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« Best prediction methods take genetic values as random effect.

« These methods require individual genotypes and phenotypes.
 These data are often not publicly accessible.

« Computationally demanding with large # individuals/SNPs.

« Could be addressed by using GWAS summary stafistics (sumstats).

« Methodology in human genetics has moved forward to use GWAS
sumstats only.
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Sumstats

Cell Genomics ¢? CellPress

OPEN ACCESS

2021

‘ '.) Check for updates

Genome-wide association studies

Workshop proceedings: GWAS summary
statistics standards and sharing

Jacqueline A.L. MacArthur,’-2* Annalisa Buniello,” Laura W. Harris,’ James Hayhurst,” Aoife McMahon," Elliot Sollis,’
Maria Cerezo,' Peggy Hall,® Elizabeth Lewis," Patricia L. Whetzel," Orli G. Bahcall,* Inés Barroso,> Robert J. Carroll,®

Michael Inouye,”-#-° Teri A. Manolio,® Stephen S. Rich,° Lucia A. Hindorff,®> Ken Wiley,® and Helen Parkinson'-*

Table 1. Recommended standard reporting elements for GWAS

SumStats

Data element

Column header

Mandatory/Optional

variant id
chromosome

base pair
location

p value
effect allele
other allele

effect allele
frequency

effect (odds

ratio or beta)
standard error
upper confidence
interval

lower confidence
interval

variant_id
chromosome

base_pair_
location

p_value
effect_allele
other_allele

effect_allele_
frequency

odds_ratio or
beta

standard_error
ci_upper

ci_lower

One form of variant ID

is mandatory, either rsID

or chromosome, base pair
location, and genome build®

Mandatory
Mandatory
Mandatory
Mandatory

Mandatory

Mandatory
Optional

Optional

Emil Uffelmann®', Qin Qin Huang®?2, Nchangwi Syntia Munung@®?, Jantina de Vries?,
Yukinori Okada®*5, Alicia R. Martin®7¢, Hilary C. Martin, Tuuli Lappalainen®'®? and
Danielle Posthuma@® '™

Table 3 | Databases of GWAS summary statistics

Database Content

GWAS Catalog*® GWAS summary statistics and GWAS lead SNPs reported in
GWAS papers

GeneAtlas® UK Biobank GWAS summary statistics

Pan UKBB UK Biobank GWAS summary statistics

GWAS Atlas?” Collection of publicly available GWAS summary statistics

with follow-up in silico analysis

FinnGen results GWAS summary statistics released from FinnGen, a project
that collected biological samples from many sources in

Finland

dbGAP Public depository of National Institutes of Health-funded
genomics data including GWAS summary statistics

OpenGWAS database GWAS summary data sets

Pheweb.jp GWAS summary statistics of Biobank Japan and

cross-population meta-analyses

For a comprehensive list of genetic data resources, see REF.">. GWAS, genome-wide
association studies; SNP, single-nucleotide polymorphism.
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Sumstats for PGS prediction [~ Rt

...... ALIA

What are the minimum data required?

Given the standard GWAS with genotypes being allelic counts (0/1/2),
the minimum data required for PGS prediction include:

SNP marginal effect estimates

Standard errors > GWAS sumstats
GWAS sample size

LD correlations among SNPs - LD matrix

47
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Sumstats for PGS prediction

SNP marginal effect estimates

GWAS estimates effect of each SNP one at a time from single SNP regression, so the
estimate is marginal to (unconditional on) other SNPs.

-1
= "X ! 5 o
by = (X/X;) Xy : g :
. . . 4.0
Assuming X has been stfandardised with column e &
mean zero and variance one, then g g .
! g 3.0
Xij = nVar(Xj) =n £ s
. (&)
And 2048
1 : : ;
b] X y SNP genotype

Note that it has the inner product of the SNP genotypes and the phenotypes.
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LD matrix for PGS prediction

Linkage disequilibrium (LD) correlations

Usually obtained from a reference population
LD correlation matrix -

R = 1X'X

1
n

assuming X is standardised “u,
with mean zero and .
variance one

.-...;'“; 11

49



Compare BayesR and SBayesR algorithms

Gibbs sampling

Full conditional distribution for g;, if in a nonzero dist'n,

r.

2
£(B; | b,else) = N (E’]Z—j)

where

Individual-level data Summary-level data
=Xy — 2 X _
LA (y k#j kﬁk) Tj = nb; - zkij Ry Pk

2 0.2
O _ e

K Y04 / \_ Y04 .

50




Compare BayesR and SBayesR algorithms

All X'y and X’X can be replaced by nb and nR

Algorithm 1 - Individual level data algorithm

Initialise parameters and read genotypes and phenotypes in PLINK binary format
Initialise y* =y — XB

for i :=1 to number of iterations do

fori:=1topdo

od

od

Sample update from full conditional for (TE from scaled inverse chi-squared distribution v = vg + g and s B =

Calculate r =x y
Calculate r; = rj + xjxjﬁ](ifl)
Calculate 02 = 0}%75]:5 for each of C classes (e.g., BayesR C=4 and v = (0,0.0001,0.001,0.01))

Calculate the left hand side ;. = x]’.x,' + g for each of the C classes

2
Calculate the log densities of given ; = c using log(Lc) = —5 {log (Uc I”) ;l ] + log(7.), where 7. is the current
e . a1s . . _ _ 1
Calculate the full conditional posterior probability for &; = c for C classes w1tb P(d; = cl6,y) = £ expliog £, Tog(£0)]
Using full conditional posterior probabilities sample class membership for /S](.’) using categorical random variable sampler
Given class sample SNP effect ﬁ}( from N (Ir , ‘1752 )
Given SNP effect adjust corrected phenotype side (y*)() = (y*)(=1) — X; (,B;i) - ,B;iil))
/52
g ﬂ*zq 1 Wc
vgtq 4

where g is the number of non-zero Varlar\ts
Sample update from full condmonal for o2 from scaled inverse chi-squared distribution 7, = 1 + v,

and scale parameter 52— SSE”‘ 2257 and SSE = y*'y*

Sample update from full conditional for 7t, which is Dirichlet(C, ¢ + &), where c is a vector of length C and contains the counts
of the number of variants in each variance class and « = (1,...,1)

Calculate genetic variance for 12y calculation using ‘782' = Var(XpB)

Calculate héN p=

>
I3
o2 +a?

Lloyd-Jones et al. 2019 Nat Comm, Supplementary Note

Algorithm 2 Summary data algorithm

Initialise parameters and read summary statistics
Reconstruct X'X and X'y from summary statistics and LD reference panel
Calculate r* = X'y — X'X8
fori:=1 to number of iterations do
fori:=1topdo
Calculate r; = 1} +xx;B;
Calculate 2 = afnyFC for each fo C classes (e.g., SBayesR C=4 and «y = (0,0.01,0.1,1)")

Calculate the left hand side I;; = x;x‘,' + E;"— for each of the C classes

2
Calculate the log densities of given é; = c using log(Lc) = —3 [log (02! ) - ?ZIL] + log(mtc), where 7. is the current
e lic

Calculate the full conditional posterior probability for é; = ¢ for C classes with IP(J; = c[8,y) = 5 exp[lug(lﬁ T logZ]
I=1 (Ea (3

Using full conditional posterior probabilities sample class membership for ﬁgi) using categorical random variable sampler
Given class sample SNP effect ﬁ}i) from N ("%’ D;T%)
Given SNP effect adjust corrected right hand side (r*) (1 = (r*)() — X'x; (ﬁ;“’” - ,Sj(.')). X'x; is the jth column of X'X.
od 2
-~ "U'%z“'E?—] %
Sample update from full conditional for o2 from scaled inverse chi-squared distribution 7, = vy + q and 72, = o
where g is the number of non-zero variants
Sample update from full conditional for ¢ from scaled inverse chi-squared distribution 7, = n + v,

and scale parameter T2 = SSE_J[”‘T’ and SSE =y'y — B'r* — p'X'y
Sample update from ful_l conditional for 7r, which is Dirichlet(C, ¢ + &), where c is a vector of length C and contains the counts
of the number of variants in each variance class. . "
Calculate genetic variance for h%,;, calculation using crg = MSS/n, where MSS = B X'y — B r*
Calculate h%,, = %
od
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From individual- to summary-level model

Consider an individual-data model with a standardised genotype
maftrix X:

y=Xp +e
Multiply both sides by =X’ gives

1X' 1X'X +1X'
—_ — — —_— e
n y n B n

/b=RB+e -

1
Var(e) = —Ro?
GWAS marginal SNP effects T n

LD correlation matrix
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Potential issue 0 B

* |n principle, SBayes and Bayes are equivalent methods when same
data are used (X'y and X'X are sufficient staftistics).

« However, when LD is estimated from a reference sample, SBayes is
only an approximation fo Bayes.

 Whether the difference is negligible depends on the heterogeneity
in LD between the GWAS and LD ref samples.
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Assumptions regarding LD reference

LD reference population matches with GWAS population in genetics

* No systematic differences in LD - same ancestry

* Minimum sampling variance in LD - LD ref sample size cannot be too small

¢ AFR d EAS e AFR
k 1.0 = 1.0 1.0
e 0.8 “ 0.8 0.8

l.!u.

0 = 0.6 « 0.6 « : 0.6
" 0.4 W 0.4 w 0.4
0.2 0.2 0.2
0.0 0.0 0.0

Failure to meet this assumption can result in a convergence issue!
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Always good to check SNP effect estimates
GWAS marginal effect size vs. Estimated joint effect size

Most common Presence of large effects Bad convergence!

________________

2

1

0

-1

Joint effect estimates

-2

Joint effect estimates
Joint effe“cfp Ae“s‘tgimates

GWAS marginal effects GWAS marginal effects GWAS marginal effects
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How do different methods handle this issue?

Advance Access Publication Date: 16 December 2020
Origial Paper

« Run multiple MCMC chains with different starting values .

 e.9. LDpred?

Genetics and population analysis

LDpred2: better, faster, stronger

Florian Privé™*, Julyan Arbel? and Bjarni J. Vilhjalmsson™**

« Force an (ad hoc) minimum strong shrinkage to SNP effects —
° e.g ., PRS_CS xplore content v Aboutthe journal v Publish with us v

! ! nature » nature communications > articles > artich
X](y_ lnu—2k¢jxkﬁk) 2 (X’X + 2 2) nature > nat f articles > article
X’X' + 2/ 2 ’ Ue/ A O¢ /Uﬁ Article | Open access | Published: 16 April 2019
j&)j T e /0g Polygenic prediction via Bayesian regression and
\ continuous shrinkage priors

Tian Ge B4, Chia-Yen Chen, Yang Ni, Yen-Chen Anne Feng & Jordan W. Smoller

1 the shrink teri ttob ter th threshold val ‘ .
b R eg U |O.I-e LD m O.I-rICeS € shrn age parame eris se 0 e grea er ana resho value Nature Communications 10, Article number: 1776 (2019) | Cite this article

70k Accesses | 1680 Citations | 53 Altmetric | Metrics

* e.g. SBayesR uses chromosome-wide shrunk LD matrices
« e.g. SBayesRC uses eigen-decomposed matrices from LD blocks

_— <\ Y
T(lﬁl\lﬂ T — nature genetics
COMMUNICATIONS
Article https://doi.org/10.1038/541588-024-01704-y
— Leveraging functional genomic annotations
and genome coverage toimprove polygenic
Improved polygenic prediction by Bayesian multiple prediction ofconjplex traits withinand
regression on summary statistics between ancestries
Luke R. Lloyd-Jones. , Jian Zeng® %%, Julia Sidorenko'?, Loic Yengo', Gerhard Moser®®,
Kathryn E. Kemper', wei Wang® |, Zhili Zheng', Reedik Magi?, Tonu Esko?, Andres Metspalu®®,
Naomi R. Wray® ', Michael E. Goddard’, Jian Yang® ' & Peter M. Visscher@™* Received: 10ctober 2022 Zhili Zheng®'2*  , Shouye Liu', Julia Sidorenko®", Ying Wang®", Tian Lin®",
Accepted: 5 March 2024 Loi 900 urley! o,

, Snieder®@°, . Jian Ya
a 1y ®""°, Michael E. Goddard™™, Peter M. Visscher @'**
jian Zeng®'

Publishes

April 2024

[#]Check for updates
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Low-rank model (fits 7M SNPs or more)

In each quasi-independent LD block:
b = R p + €

[ GWAS SNP marginal effects ][ LD correlation matrix ][ SNP joint effects ][ Residuals ]

I . I Var(E) ) .

/ Eigen-decomposition \
I ‘ ‘ It only requires the top 20%
u A u PCs to explain 99.5% of the
) . . variance in LD!
A2Ub =  AzU B+ A2Ue
A"\ = Q ﬁ + <
] e
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Practical Exercise Part 2: SBayesR

https://gctbhub.cloud.edu.au/data/teaching/
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Incorporating functional genomic annotations

59



Functional genomic annotations

Functional genomic annotations provide orthogonal information useful for polygenic
prediction.

« Chromatin states
« Biological functions
« Molecular quantitative trait loci (xQTL)

------ Regulatory sequence Regulatory sequence
Enhancer
/silencer Promoter 5'UTR Open reading frame fsilencer
1 1 I
Proximal Core Start Stop

owa - W -
H3K4me3 “ JL

H3K27ac

oI U W

Image from ENCODE
CRICOS code 00025B 60



Functional genomic annotations O or i

Functional genomic annotations provide orthogonal information useful for polygenic
prediction.

« Chromatin states
« Biological functions
« Molecular quantitative trait loci (xQTL)

------ Zeng et al 2021 Nature Communications

0
& C;\

Fold enrichment
in per—SNP heritability

a° (,° S

CRICOS code 00025B 61



Opportunities/challenges

Functional annotations are informative on both the presence of causal variants and the
distribution of causal effect sizes.

Differences in proportion of Differences in distribution of
causal variants causal effects
@© _
o
B Proportion of SNPs
B Proportion of causal variants
©
o
<
o
N
o
o
o

Anno 1 Anno 2 Anno 3

CRICOS code 00025B 62



L |te ratu re e

nature communications PLOS COMPUTATIONAL BIOLOGY

Explore content v About the journal v Publish with us v
& OPENACCESS B PEER-REVIEWED

— . . RESEARCH ARTICLE
nature > nature communications > articles > article

Leveraging functional annotations in genetic risk prediction

Article | Open Access | Published: 18 October 2021 .
for human complex diseases

lnCOI"pOl‘ating fllnctional pl‘iOl‘S impl‘OVCS pOIygenic Yiming Hu B3, Qiongshi Lu B, Ryan Powles, Xinwei Yao, Can Yang, Fang Fang, Xinran Xu, Hongyu Zhao
prediction accuracy in UK Biobank and 23andMe data
sets AnnoPred

Carla Méarquez-Luna &, Steven Gazal, Po-Ru Loh, Samuel S. Kim, Nicholas Furlotte, Adam Auton,

23andMe Research Team & Alkes L. Price

Winner's Curse Correction and Variable Thresholding
LDpred-funct Improve Performance of Polygenic Risk Modeling Based on
Genome-Wide Association Study Summary-Level Data

Jianxin Shi [&], Ju-Hyun Park, Jubao Duan, Sonja T. Berndt, Winton Moy, Kai Yu, Lei Song, William Wheeler, Xing Hua,
Debra Silverman, Montserrat Garcia-Closas, Chao Agnes Hsiung, Jonine D. Figueroa, [ --- I, Nilanjan Chatterjee [E] [ view all ]

Exploiting biological priors and sequence variants P+T-funct-LASSO
enhances QTL discovery and genomic prediction of

complex traits .
nature genetics

I. M. MacLeod &, P. J. Bowman, C. J. Vander Jagt, M. Haile-Mariam, K. E. Kemper, A. J. Chamberlain,
C. Schrooten, B. J. Hayes & M. E. Goddard

Explore content ¥ About the journal ¥  Publish withus v

nature > nature genetics > articles > article

BMC Genomics 17, Article number: 144 (2016) | Cite this article

6209 Accesses | 146 Citations | 9 Altmetric | Metrics Article | Published: 07 Apri 2022
Leveraging fine-mapping and multipopulation training
B ayes RC data to improve cross-population polygenic risk scores

Pol y P red Omer Weissbrod &, Masahiro Kanai, Huwenbo Shi, Steven Gazal, Wouter J. Peyrot, Amit V. Khera,
Yukinori Okada, The Biobank Japan Project, Alicia R. Martin, Hilary K. Finucane & Alkes L. Price &

Nature Genetics 54, 450-458 (2022) | Cite this article 63
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Need new method that can

* simultaneously fit all SNPs and annotation data in a
unified model

e account for variations in both causal variant proportion

and causal effect distribution

nature genetics

Article

https://doi.org/10.1038/s41588-024-01704-y
Leveraging functional genomic annotations
and genome coverage toimprove polygenic

Leveraging functional annotations prediction of complex traitswithinand
. e between ancestries
for cross-ancestry prediction

CRICOS code 00025B 64



SBayesRC

Incorporate functional annotations through a hierarchical prior:

B] ~ T4 +7T2 +7T3 +7T4_ +7T5

y J\

probit(njk) = SNP annotations X annotation effects

effect

5B 65

effect effect

effect
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Incorporate functional annotations through a hierarchical prior:

B] ~ T4 +7T2 +7T3 +7T4_ +7T5

' J\

probit(njk) = SNP annotations X annotation effects

» Annotation effects are additive at » Estimation of conditional effects. » # annotation effect parameters x 5.
the GLM scale. « Allow annotation overlap. o Tjy + Mjp+ Wjz+ Wiy + mjs = 1.
* Interpretation.

CRICOS code 00025B 66



Reparameterisation of annotation effects

Suppose 4 components for simplicity

« Aset of 2-component independent models:

« For all SNPs [ ]
Bi ~ (1—p2) + 2 }\

« For SNPs with nonzero effects (conditional on non-nul SNPs)

Bi ~ (1 —p3) H + p3

« For SNPs with at least medium effects (conditional on non-small-effect SNPs)

D2. P3, P4 Qre

P~ (A =py) P independent!

CRICOS code 00025B 67



Reparameterisation of annotation effects

Probit link function:

O~ 1(p) = z SNP annotation X annotation effect

where @ is the CDF of the standard normal distribution.

It is straightforward to compute p = &(-)

and my =1 —py; m, = (1 —p3)py; m3= (1 — py)P3D2; = P2P3D4

Assume a hormal prior distribution for each annotation effect.

Gibbs sampling for all parameters.

CRICOS code 00025B 68



Trans-ancestry prediction
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Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS
PRS-CSx

)

PRS-CSx

B [6)]
o o
1 1

W
o
L

—
o
1

Improved prediction accuracy (%)
o 3
|

17%
|

1.4%

1M SNPs
W/o annot

Train dataset

F= UKB-EUR

E UKB-EUR + BBJ

nature genetics

Explore content v About the journal v  Publish withus v Subscribe

GWAS sumstats GWAS sumstats| |GWAS sumstats
LD ref pop A LD ref pop B LD ref pop C
PRS-CSx

PRS A + PRS B PRS C

Final PRS

nature > nature genetics > articles > article

Article | Published: 05 May 2022

Improving polygenic prediction in ancestrally
diverse populations

Yunfeng Ruan, Yen-Feng Lin, Yen-Chen Anne Feng, Chia-Yen Chen, Max Lam, Zhenglin

Luo, staniey slobal Asia Iniiatives, Lin fAe, AKIra sawa, Alicia k. Martin, shengyin

Hailiang Huang £ & Tian Ge &

Nature Genetics 54, 573-580 (2022) | Cite this article

How important is functional
annotation data compare to
another GWAS dataset from
the target ancestry?

CRICOS code 00025B 69




Trans-ancestry prediction

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS

()

PRS-CSx SBayesRC
504
O\O (0]
< 16%
O 40 A o o
© 17%
>
8 30- |
© Train dataset
[
o 7.0% m
3 20 | > E UKB-EUR
3 E UKB—-EUR + BBJ
o 10 - 1.4% 4.0%
©
q>) | -0.4% $
e e o o
R e - - $ ————————————————————————————————————
£ [
1M SNPs 1M SNPs 1M SNPs Dense SNPs Dense SNPs
W/o annot W/o annot With annot W/o annot With annot

CRICOS code 00025B 70



Trans-ancestry prediction

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS

()

PRS-CSx SBayesRC 33%

(o))
o
1

17.8% 24.9% |

‘ 198% 1 6%

AN
o
1

17%

Train dataset

F=3 UKB-EUR

E UKB-EUR + BBJ

w
o

7.0%

1.4% 4.0% |
]
| o $

1M SNPs 1M SNPs 1M SNPs Dense SNPs Dense SNPs
W/o annot W/o annot With annot W/o annot With annot

Sv3

—_
o
1

o
I
|
II

Improved prediction accuracy (%)
N
o

CRICOS code 00025B 71
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Practical Exercise Part 3: SBayesRC

https://gctbhub.cloud.edu.au/data/teaching/
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Summary and challenges

73



nmary

« PGS are imperfect genetic predictors with inherently limited accuracy.
« Being improved with more data and better methods.

« Bayesian approach allows us to incorporate prior knowledge in estimation of SNP
effects.

« State-of-the-art Bayesian methods utilize GWAS summary statistics, which unleash
the power of large GWAS sample size but may encounter convergence issue.

« Different methods mainly differ in prior assumption and implementation.

« Functional annotations with genome coverage provide orthogonal information to
GWAS data and therefore boost prediction accuracy.
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Population
PERSPECTIVE nawure ) [l European o
https://doi.org/10.1038/541588-019-0379-x genethS 2 100 - East Asian g
E South Asianfother Asian @
Y African g
g Hispanic/Latino =
L ] L] - L ] E
Clinical use of current polygenic risk scores may S | g Sty Miade Eastem s
: M B a 507 Other ‘;
exacerbate health disparities E Mot :
3 =
- (]
AliciaR. Martin©'23*, Masahiro Kanai®"2345, Yoichiro Kamatani®5%, Yukinori Okada (578, =
Benjamin M. Neale ©*22 and Mark J. Daly ®'23° 0 -
2006 2008 2010 2012 2014 2016
Predicted into Japanese Predicted into European 10| -
b c
0.08 1 Summary statistics — 5@
] 8 s 0.75
-=-BBJ 2 52
= 0087 , ukes o 0047 . S S
8 o s's 050
. 0.04 - % 2=
Ng % 0.02 g 2
T 002 - * F &3 025 -
3
0.00 ﬁ *T T T 000 ﬁ T 0.00 -
T T T T T T T T T T (‘\ (‘\ . ‘Q ‘ (‘\ (‘\
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Ancesiry

Individual-level accuracy r,.2

0.8

o
o

N
IS

0.2 1

R =-0.96, P < 10710
r2=0.8-0.72q,

GIA
* EA
* HL
SAA
* EAA
AA
Unclassified

0.2 0.4
GD from training population

Issues

Same causal variants

« Different allele frequencies

« LD differences

« Different effect sizes
Different causal variants

« GXxE

« Different phenotype

0.6 0.8

In general:

We expect common causal
variants to be shared across

ancesftries

But correlation structure differs

nature genetics

Explore content ¥ About the journal ¥  Publish with us v

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

nature

Explore content v About the journal v Publish withus v

nature > articles > article

Article | Open Access | Published: 17 May 2023

Polygenic scoring accuracy varies across the genetic
ancestry continuum

Yi Ding £, Kangeheng Heu, Zigi Xu, Aditya Pimplaskar, Ella Petter, Kristin Boulier, Florian Privé, Bjarni J.

Vilhjaimsson, Loes M. Olde Loohuis & Bogdan Pasaniuc &

Nature (2023) | Cite this article

11k Accesses | 200 Altmetric | Metrics

d EAS

0.8

0.6

EUR

0.4

0.2

0.0

nature genetics

Explore content v About the journal v  Publish with us v

nature > pature genetics > articles > article

Article = Published: 20 March 2023

Causal effects on complex traits are similar for
common variants across segments of different
continental ancestries within admixed individuals

nature > nature genetics > articles > article

Article Open access Published: 03 February 2025

Fine-scale population structure and widespread
conservation of genetic effect sizes between human
groups across traits
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hZ : True variance explained by the predictor
depends on the SNP set - subscript m.

Variance explained by RZ

the predictor 1 4+ C'

We want C to be as small as possible:
« C decreases as Discovery sample N increases

C: captures the error in estimation

As C> 0, R? > h%,

« C decreases as the number of SNPs in the SNP set m decreases

Wray et al (2019) Complex trait prediction from genome data. Genetics

As m gets smaller, h3, also gets smaller

How to optimise m and h2, to get max R*?
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How about whole genome sequencing? B o aurmiivo

Maximum depends on hz
maximising h2, Rz _

We use GWAS data so the 1+ hz
maximum k2, is the SNP-based N
heritability

Theoretical maximum depends
on the heritability of the trait

With whole genome sequencing the variance captured by
all measured SNPs will increase

But the number of SNPs that we have estimate effect sizes
for increases much more

Need MASSIVE discovery sample sizes for WGS associations

Also... rare variants are less likely to be shared across populations

Wray et al (2019) Complex trait prediction from genome data. Genetics
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