

# Bayesian Methods & Advanced Models for Polygenic Scores (PGS)

Jian Zeng

[j.zeng@uq.edu.au](mailto:j.zeng@uq.edu.au)



THE UNIVERSITY  
OF QUEENSLAND  
AUSTRALIA

Institute for Molecular Bioscience



Program in Complex  
Trait Genomics

- Understanding to polygenic scores (PGS)
- Basic method to construct PGS
- Bayesian methods [15min Lecture | 15min Practical | 5min break ]
- Using GWAS summary statistics [15min Lecture | 15min Practical | 5min break ]
- Incorporating functional genomic annotations [15min Lecture | 15min Practical]
- Wrap-up/discussion/questions

Practical exercises will use a toy example and R scripts

All materials are available at:

<https://gctbhub.cloud.edu.au/data/teaching/>

# Polygenic scores (PGS)

Polygenic scores (PGS) predict individual genetic values of complex traits using genome variations.

Polygenic risk scores (PRS) are predictors of the genetic susceptibilities of individuals to diseases.



Head in the clouds

Head in the sand

Source: Strachan & Read Human Molecular Genetics 3.

Theory and methodology  
of polygenic scores (PGS)  
are built on  
our understanding of  
“polygenicity”  
in complex traits.



Height

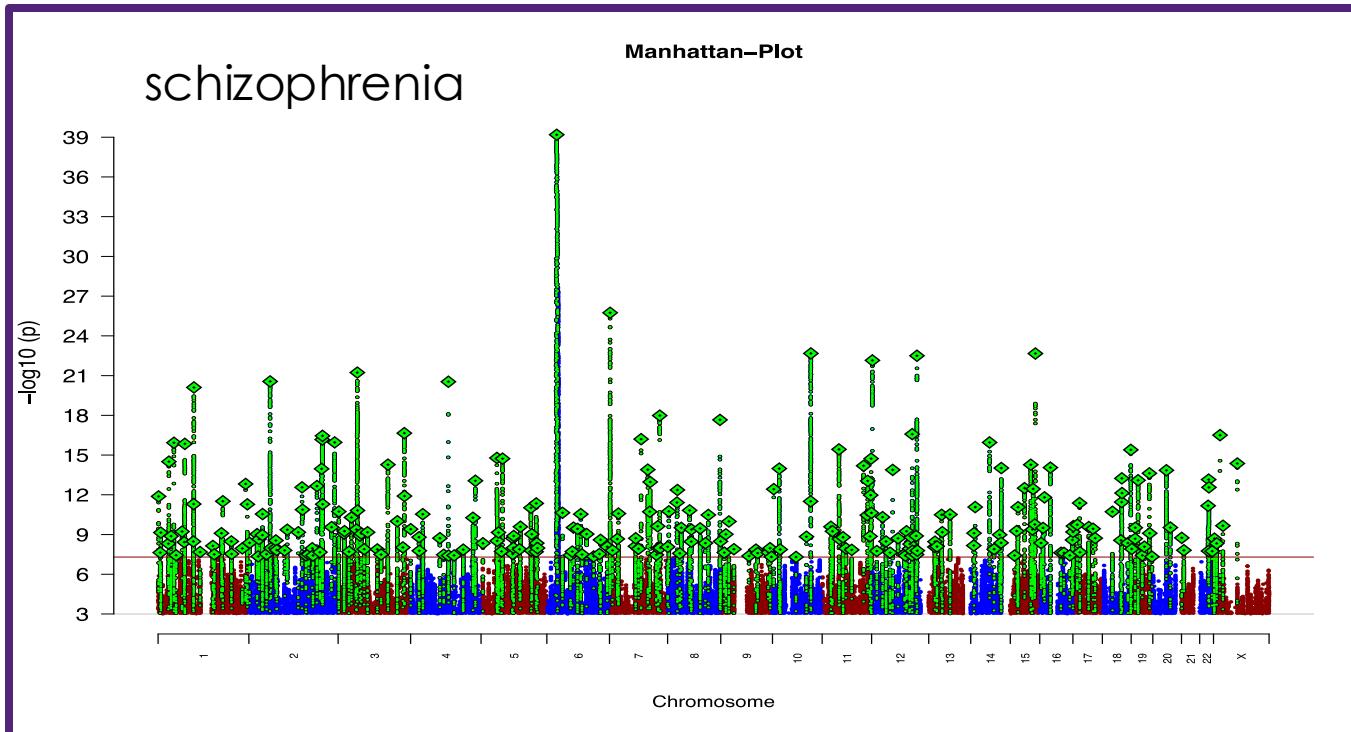


Schizophrenia



Obesity

# Common diseases are polygenic



248 risk loci identified at genome-wide significance level.

We predict thousands are associated with schizophrenia.

nature

Explore content ▾ About the journal ▾ Publish with us ▾

[nature](#) > [articles](#) > [article](#)

Article | [Published: 08 April 2022](#)

## Mapping genomic loci implicates genes and synaptic biology in schizophrenia

[Vassily Trubetskoy](#), [Antonio F. Pardiñas](#), [Ting Qi](#), [Georgia Panagiotaropoulou](#), [Swapnil Awasthi](#), [Tim B. Bigdeli](#), [Julien Bryois](#), [Chia-Yen Chen](#), [Charlotte A. Dennison](#), [Lynsey S. Hall](#), [Max Lam](#), [Kyoko Watanabe](#), [Oleksandr Frei](#), [Tian Ge](#), [Janet C. Harwood](#), [Frank Koopmans](#), [Sigurdur Magnusson](#), [Alexander L. Richards](#), [Julia Sidorenko](#), [Yang Wu](#), [Jian Zeng](#), [Jakob Grove](#), [Minsoo Kim](#), [Zhiqiang Li](#), [Indonesia Schizophrenia Consortium](#), [PsychENCODE](#), [Psychosis Endophenotypes International Consortium](#), [The SynGO Consortium](#), [Schizophrenia Working Group of the Psychiatric Genomics Consortium](#)

+ Show authors

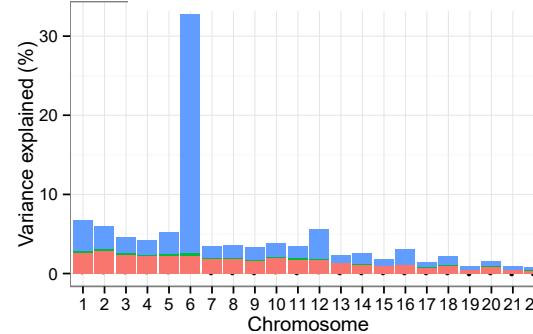
[Nature](#) **604**, 502–508 (2022) | [Cite this article](#)

57k Accesses | 321 Citations | 463 Altmetric | [Metrics](#)

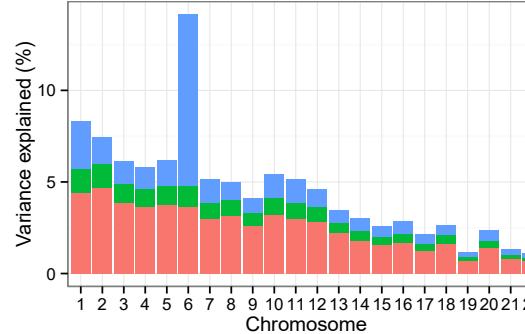


# Many polygenic genetic architectures

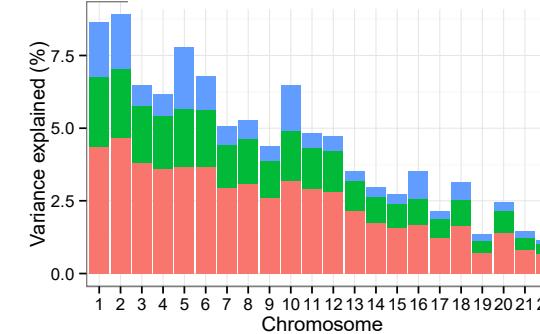
Type 1 Diabetes



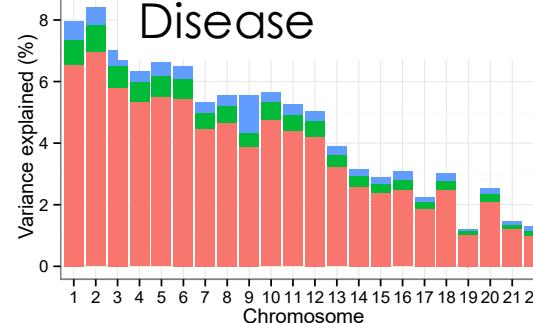
Rheumatoid Arthritis



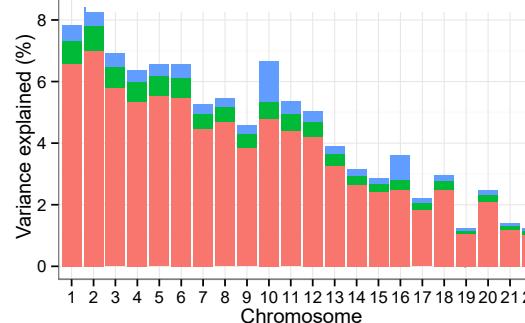
Crohn's Disease



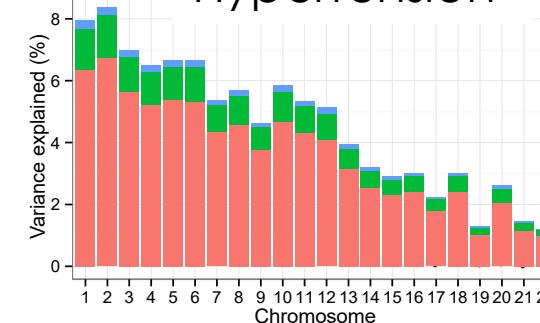
Coronary Artery Disease



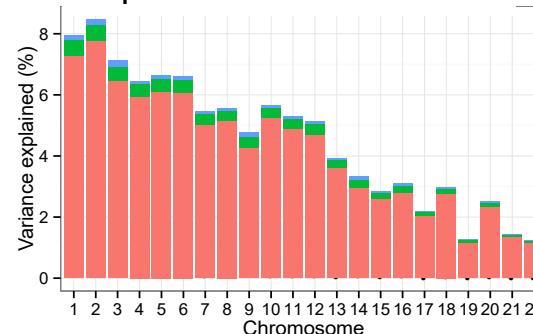
Type 2 Diabetes



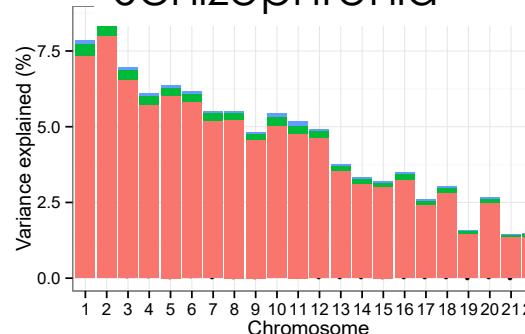
Hypertension



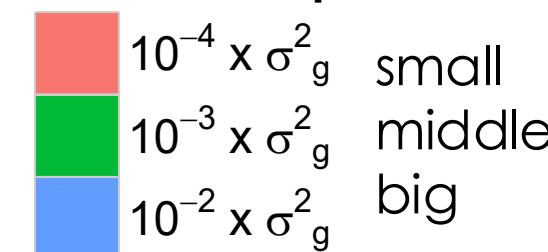
Bipolar Disorder



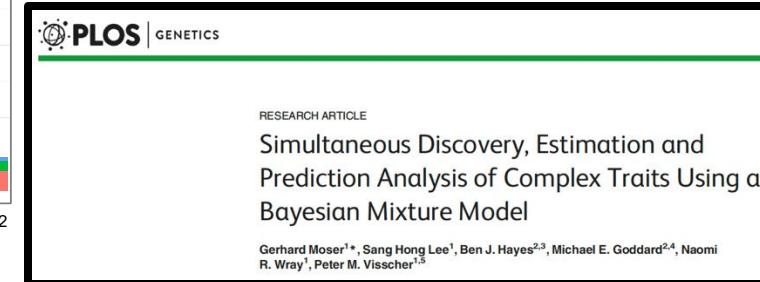
Schizophrenia



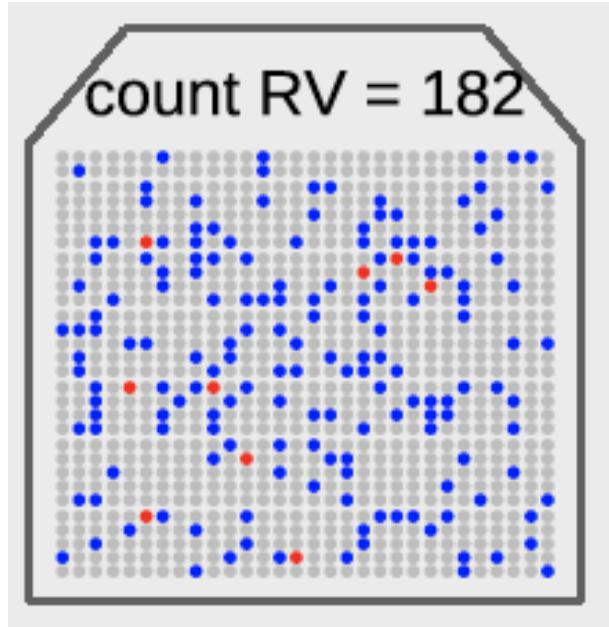
**Mixture component**



Many DNA variants contribute to genetic risk, and most have very small effects.



# Polygenic disease for an individual



900 DNA polymorphic sites

RV =risk variant

Frequency of risk variant at each site: 0.1 (p)

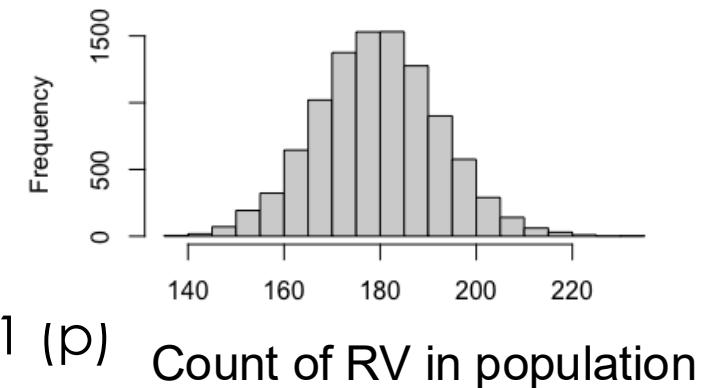
Average person  $900*2*0.1 = 180$  risk variant

Mean +/- 3SD: 142 to 218

0 Grey: Homozygote no risk alleles (or equivalently 2 protective alleles)

1 Blue : Heterozygote one risk allele (and one non-risk/protective allele)

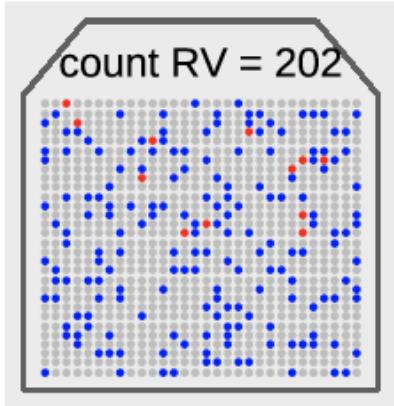
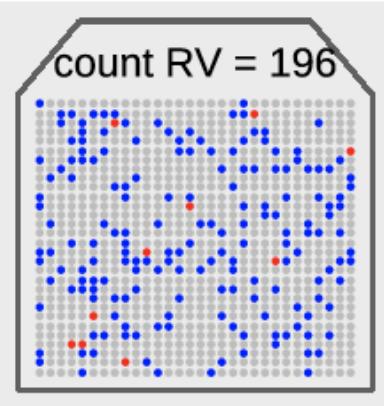
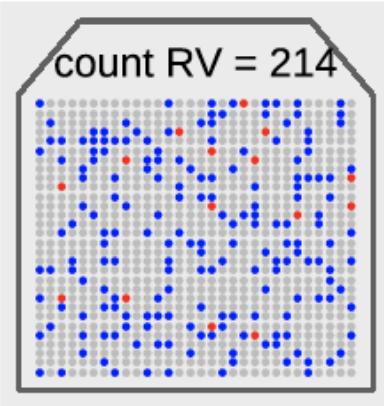
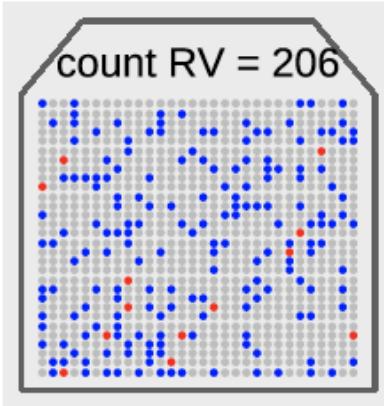
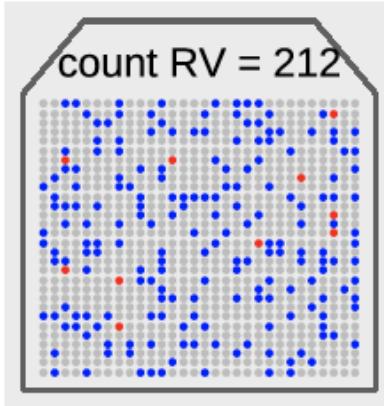
2 Red: Homozygote two risk alleles



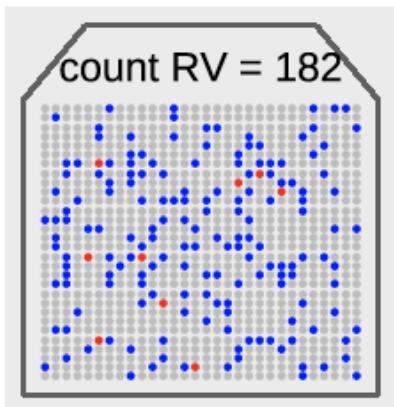
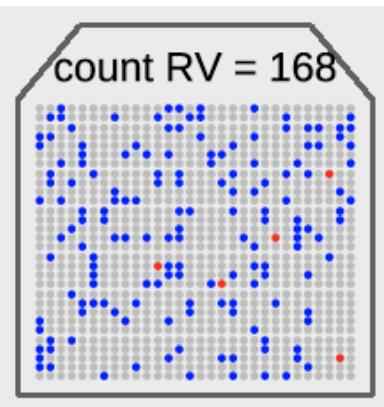
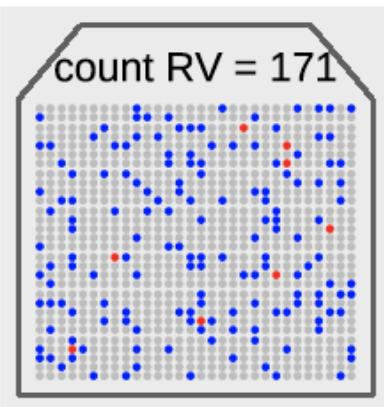
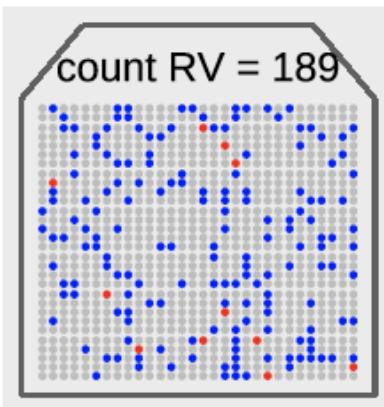
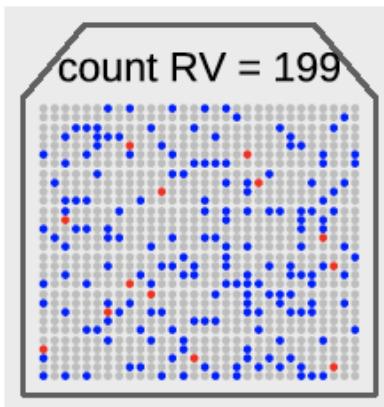
Toy  
example

# Polygenic disease for an individual

Affected over lifetime

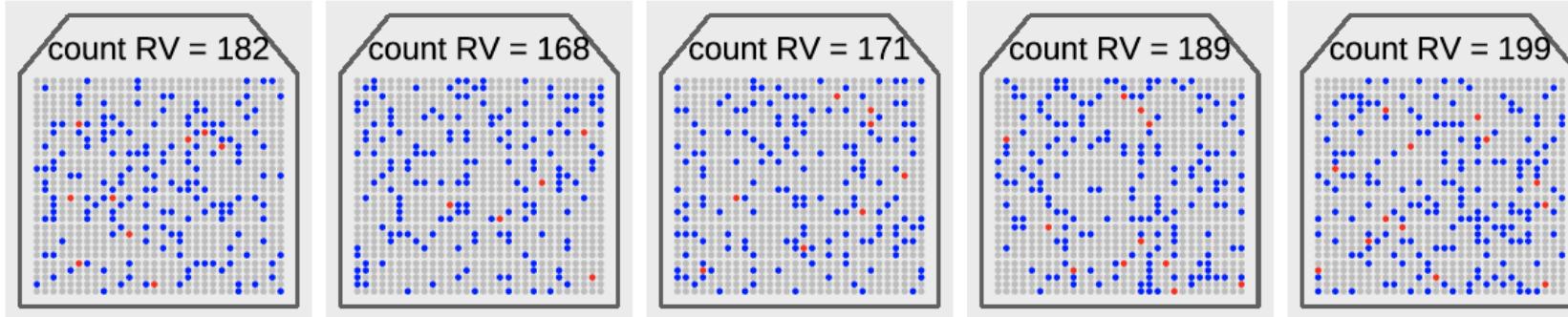


Not affected over lifetime



- We all carry risk variants for all diseases.
- Robustness
- Those affected carry a higher burden.
- Non-genetic factors contribute to risk too
- Each person carries a unique portfolio of risk alleles

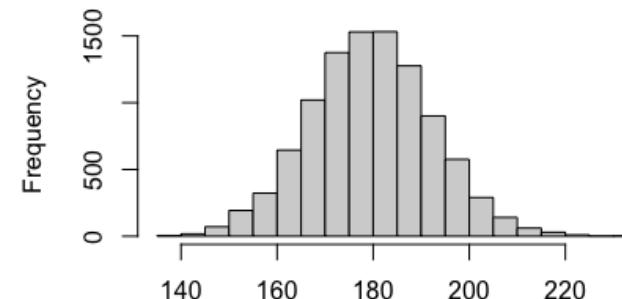
# Polygenic score



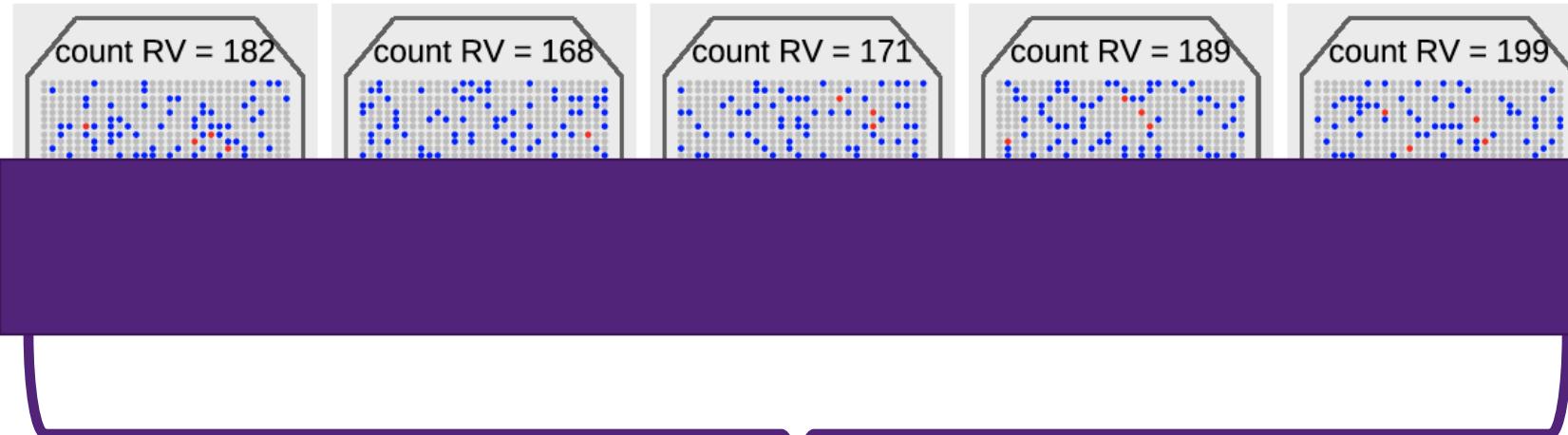
→ “True” polygenic score

Genetic variance between people attributed to all genetic factors  $V(A)$

$$h^2 = \frac{V(A)}{V(P)} \text{ heritability}$$



# Polygenic score



“True” polygenic score

Not all variants captured  
on genotyping arrays

Genetic variance between people attributed to all genetic factors  $V(A)$

$$h^2 = \frac{V(A)}{V(P)} \text{ heritability}$$



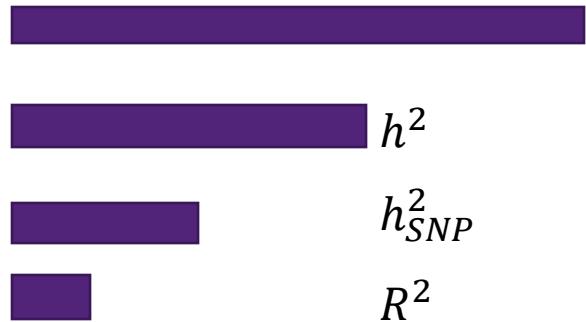
Genetic variance between people attributed to all genetic factors  
associated with SNPs on genotyping arrays

$$h_{SNP}^2 = h_g^2 = \frac{V(A: SNP)}{V(P)}$$

SNP – based heritability

# Limitations in prediction accuracy

- ❖ PGS have a **theoretical** upper limit dependent on the **heritability of the trait** (how much of the variance of trait values between people is attributed to genetic factors).
- ❖ PGS have a **technical** upper limit associated with the proportion of **variance tagged** by the DNA variants measured.
- ❖ PGS have a **practical** upper limit dependent on the **sample size of the discovery sample** used to estimate effect sizes of risk alleles, and the **quality** of the discovery sample.
- ❖ PGS can be pushed closer to the technical upper limit by the **statistical methodology** used to generate the optimal weighting given to the risk alleles, and new methods integrate new biological data.



## Schizophrenia

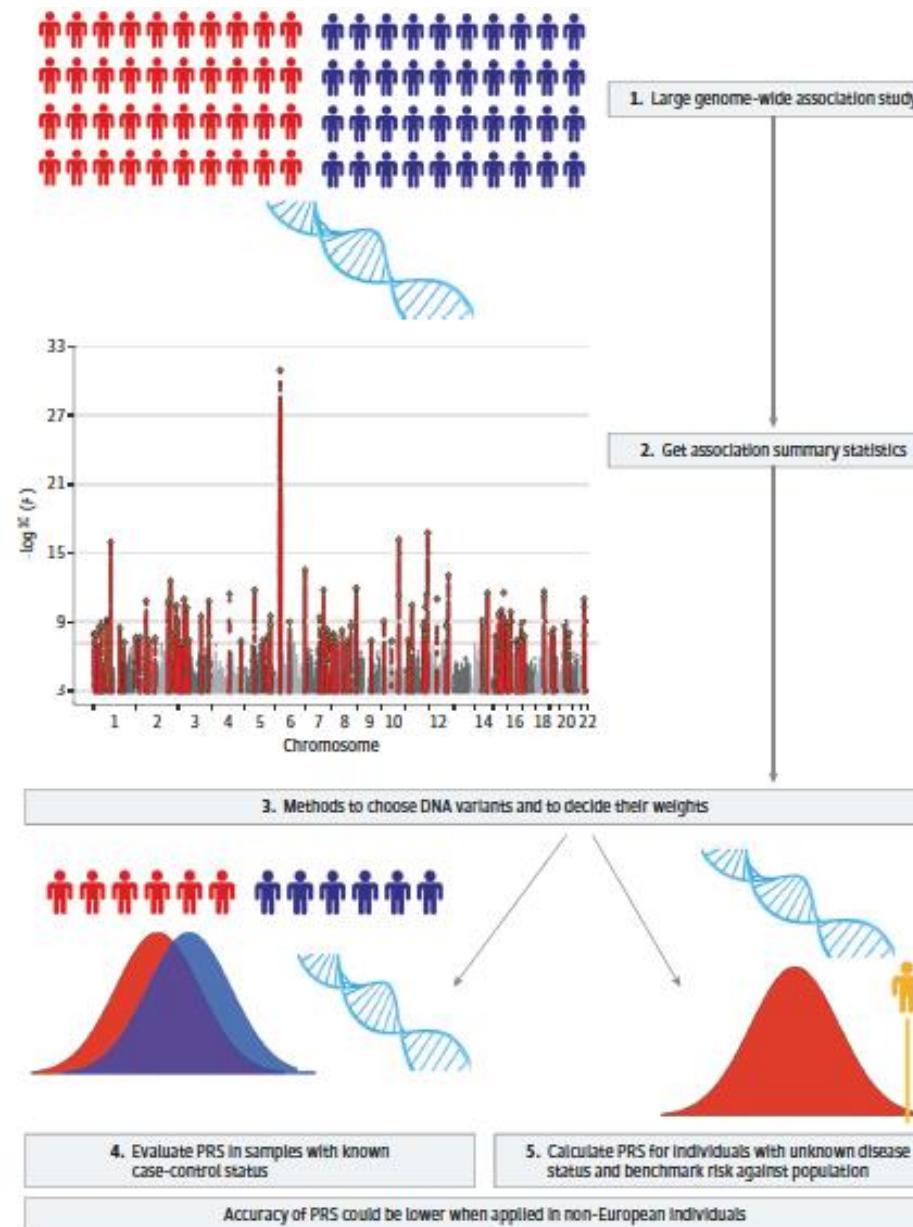
**Max:**  
25% Liability  
AUC 0.84

**Current:**  
11% Liability  
AUC 0.74

Polygenic scores cannot be highly accurate predictors of phenotypes

# Basic method for PGS

# Polygenic scores (PGS)



- A weighted count of risk alleles

$$PGS = \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \hat{\beta}_3 x_{i3} + \dots = \sum_{j=1}^{n_{SNP}} \hat{\beta}_j x_{ij}$$

0, 1 or 2  
Risk alleles

Which SNPs?

What weights?

- Don't need to know causal variants for prediction!
- Prediction can be based on correlated variants.

## 4. Evaluate

$$Y = b^*PGS + e$$

$$R^2 = \text{var}(b^*PGS) / \text{Var}(Y)$$

AUC statistic:  
Probability that a case ranks higher than a control

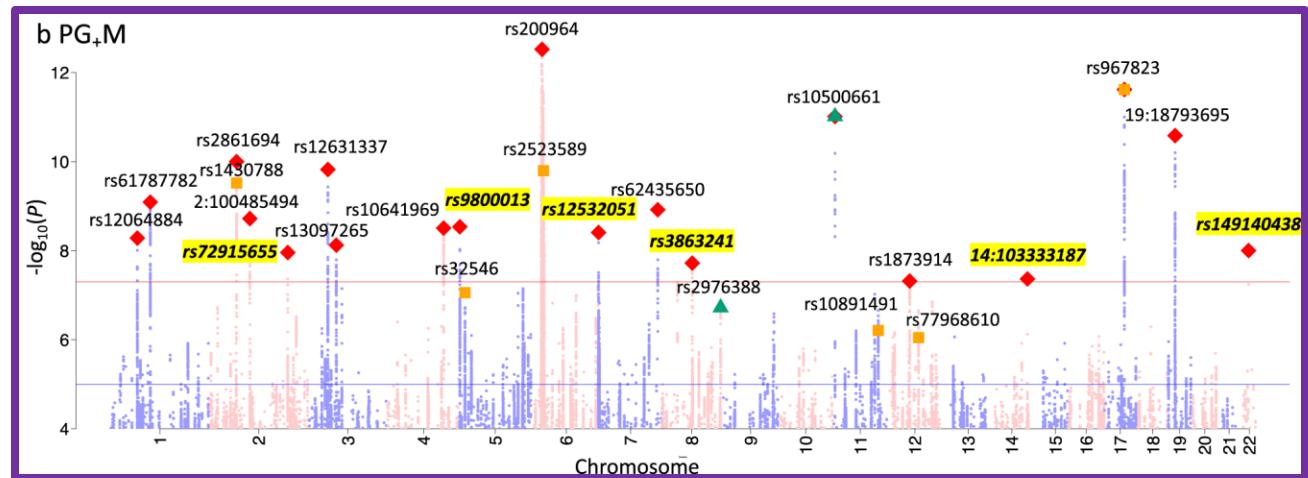
A weighted sum of the count of risk alleles

$$\text{PGS} = \widehat{\beta}_1 x_{i1} + \widehat{\beta}_2 x_{i2} + \widehat{\beta}_3 x_{i3} + \dots = \sum_{j=1}^{n_{SNP}} \widehat{\beta}_j x_{ij}$$

How many SNPs?  
Which SNPs?  
What weights?

## Basic method:

Clumping & P-value thresholding  
(C+PT):



A weighted sum of the count of risk alleles

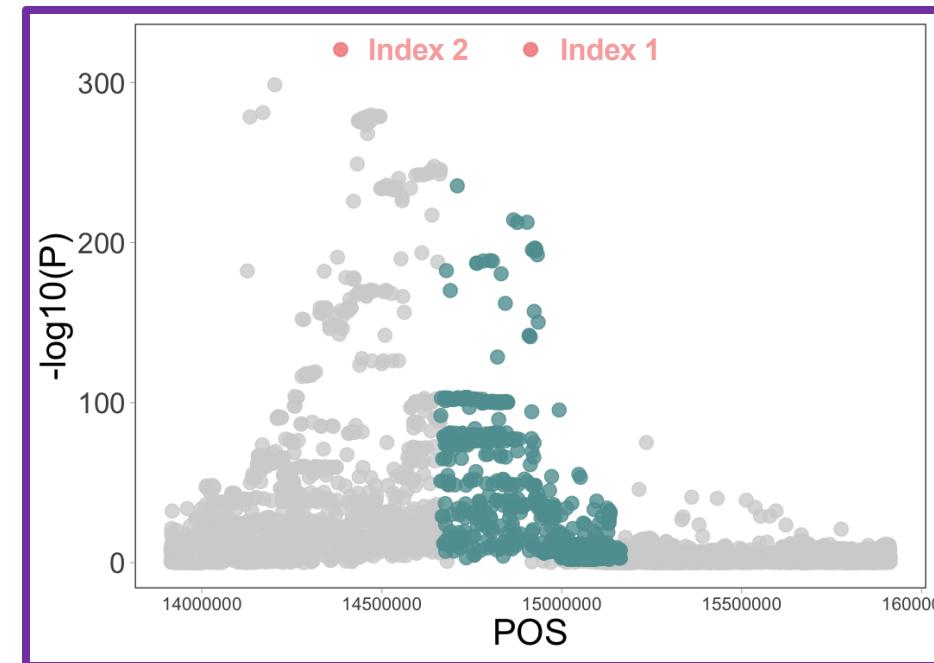
$$\text{PGS} = \widehat{\beta}_1 x_{i1} + \widehat{\beta}_2 x_{i2} + \widehat{\beta}_3 x_{i3} + \dots = \sum_{j=1}^{n_{SNP}} \widehat{\beta}_j x_{ij}$$

How many SNPs?  
Which SNPs?  
What weights?

## Basic method:

Clumping & P-value thresholding  
(C+PT):

- Select most associated SNP in tower – LD-based clumping
- Select on a p-value threshold



A weighted sum of the count of risk alleles

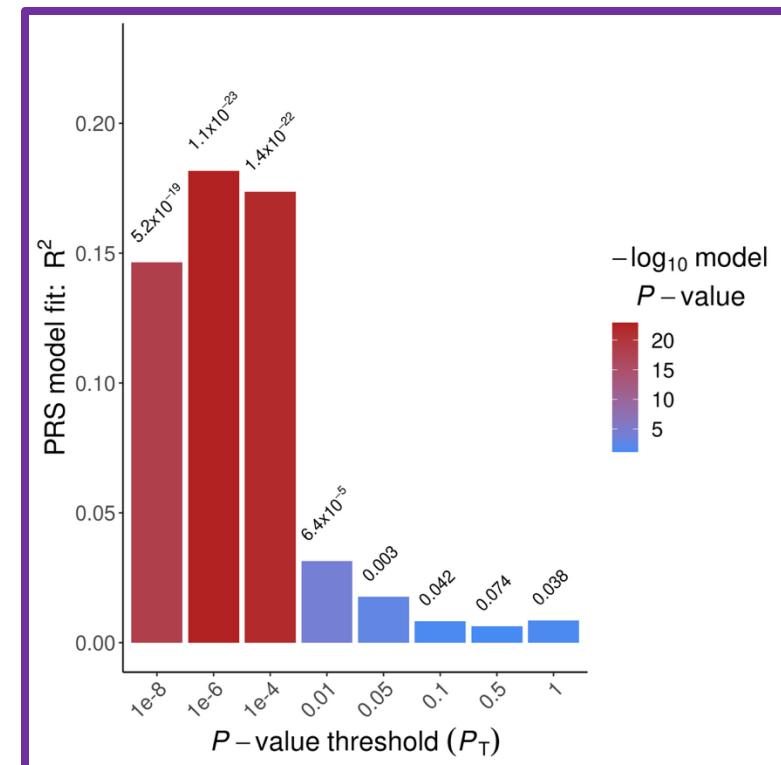
$$\text{PGS} = \widehat{\beta}_1 x_{i1} + \widehat{\beta}_2 x_{i2} + \widehat{\beta}_3 x_{i3} + \dots = \sum_{j=1}^{n_{SNP}} \widehat{\beta}_j x_{ij}$$

How many SNPs?  
Which SNPs?  
What weights?

## Basic method:

Clumping & P-value thresholding  
(C+PT):

- Select most associated SNP in tower – LD-based clumping
- Select on a p-value threshold



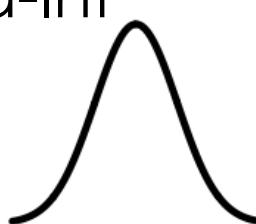
A weighted sum of the count of risk alleles

$$\text{PGS} = \widehat{\beta}_1 x_{i1} + \widehat{\beta}_2 x_{i2} + \widehat{\beta}_3 x_{i3} + \dots = \sum_{j=1}^{n_{SNP}} \widehat{\beta}_j x_{ij}$$

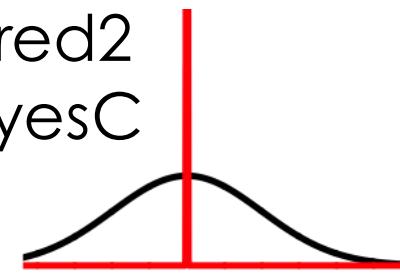
How many SNPs?  
Which SNPs?  
What weights?

**New methods model  
genetic architecture**

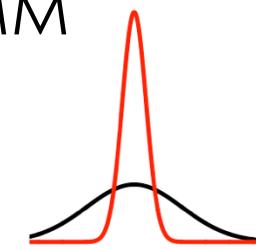
LDpred-Inf  
SBLUP



LDPred2  
SBayesC



BSLMM



SBayesR

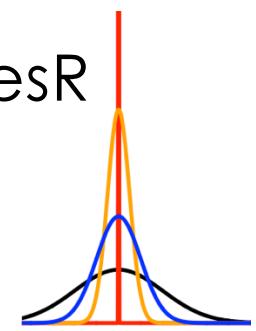


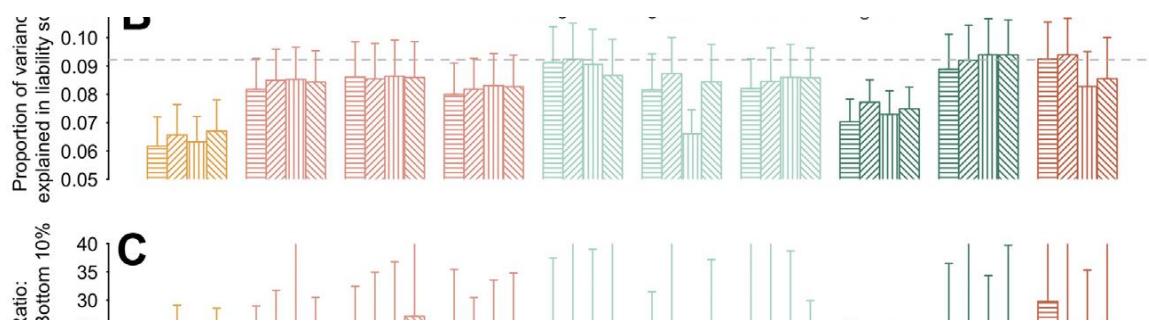
Table 1. Summary of Methods Used to Generate Polygenic Scores

| Method       | Distribution of SNP Effects ( $\beta$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tuning Sample | Predefined Parameters                                                                                | Parameters Estimated in Tuning Sample                                                                                                                        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PC+T         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes           | —                                                                                                    | $p$ -value threshold                                                                                                                                         |
| SBLUP        | $\beta \sim N \left( 0, \frac{h_g^2}{m} \right)$<br>$h_g^2$ : SNP-based heritability, $m$ : number of SNPs; $\lambda = m(1 - h_g^2)/h_g^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No            | $\lambda$<br>LD radius in kb                                                                         | —                                                                                                                                                            |
| Ldpred2-Inf  | Same as SBLUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No            | $h_g^2$<br>LD radius in cM or kb                                                                     | —                                                                                                                                                            |
| Ldpred-funct | $\beta_j \sim N(0, c\sigma_j^2)$<br>$\sum_{j=1}^M 1\sigma_j^2 > 0, c\sigma_j^2 = h_g^2$ , $c$ is a normalizing constant, $\sigma_j^2$ is the expected per SNP heritability under the baseline-LD annotation model estimated by stratified LDSC from the discovery GWAS within Ldpred-funct software                                                                                                                                                                                                                                                                                                                                     | No            | $h_g^2$<br>LD radius in number of SNPs                                                               | —                                                                                                                                                            |
| Ldpred2      | $\beta_j \sim \begin{cases} N \left( 0, \frac{h_g^2}{\pi m} \right), \text{ with probability of } \pi \\ 0, \text{ with probability of } 1 - \pi \end{cases}$<br>When sparsity is “true,” the $\beta_j$ for SNPs in the $(1 - \pi)$ partition are all set to zero                                                                                                                                                                                                                                                                                                                                                                       | Yes           | $h_g^2$<br>$\pi$ software default values, LD radius in cM or kb                                      | $\pi$ , sparsity                                                                                                                                             |
| Lassosum     | $t(\beta) = \mathbf{y}^T \mathbf{y} + (1 - s) \beta^T \mathbf{X}^T \mathbf{X} \beta - 2\beta^T \mathbf{X}^T \mathbf{y} + s\beta^T \beta + 2\lambda \ \beta\ _1^1$<br>$\mathbf{X}$ : $n \times m$ matrix of genotypes of LD reference sample, where $n$ is sample size                                                                                                                                                                                                                                                                                                                                                                   | Yes           | LD blocks                                                                                            | $\lambda, s$                                                                                                                                                 |
| PRS-CS       | $\beta_j \sim N \left( 0, \frac{\sigma^2}{n} \psi_j \right)$<br>$\psi_j \sim G(a, b_j)$<br>$b_j \sim G(b, \phi)$ , $\phi$ is a global scaling parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes           | $a = 1, b = 0.5$<br>$n$<br>LD blocks                                                                 | $\phi$                                                                                                                                                       |
| PRS-CS-auto  | Same as PRS-CS, but estimates $\phi$ from the discovery GWAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No            | $a = 1, b = 0.5$<br>$n$<br>LD blocks                                                                 | —                                                                                                                                                            |
| SBayesR      | $\beta_j   \pi, \sigma_\beta^2 \sim \begin{cases} 0, \text{ with probability of } \pi_1 \\ N(0, \gamma_2 \sigma_\beta^2), \text{ with probability of } \pi_2 \\ \vdots \\ N(0, \gamma_c \sigma_\beta^2), \text{ with probability of } 1 - \sum_{c=1}^{C-1} \pi_c \end{cases}$<br>$\sigma_\beta^2 \sim Inv - \chi^2(d.f. = 4)$<br>$\pi_i \sim Dir(1)$ , estimated from discovery GWAS in SBayesR software<br>$\gamma_i$ are scaling parameters                                                                                                                                                                                           | No            | LD radius in cM or kb<br>$C = 4$<br>$\gamma$ software default values                                 | —                                                                                                                                                            |
| MegaPRS      | Lasso: $\beta_j \sim DE(\lambda/\gamma_j)$<br>Ridge regression: $\beta_j \sim N(0, \sigma_j^2)$<br><br>BOLT-LMM: $\beta_j \sim \begin{cases} N \left( 0, \frac{(1 - f_2)\sigma_j^2}{\pi} \right), \text{ with probability of } \pi \\ N \left( 0, \frac{f_2\sigma_j^2}{1 - \pi} \right), \text{ with probability of } 1 - \pi \end{cases}$<br><br>$f_2$ is the proportion of the total mixture variance in the second normal distribution<br>BayesR: similar to SBayesR with $C = 4$ , and $\pi_i$ and $\gamma_i$ estimated in the tuning sample<br>$\sigma_j^2$ is the expected per SNP-heritability under BLD-LDAK model using SumHer | Yes           | LD radius in cM or kb<br>Parameters used in BLD-LDAK<br>Grid search parameter values for each method | The tuning cohort is used to estimate the parameters that maximize prediction for each model, and from these the model that maximizes prediction is selected |

## Archival Report

### A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts

Guiyan Ni, Jian Zeng, Joana A. Revez, Ying Wang, Zhili Zheng, Tian Ge, Restuadi Restuadi, Jacqueline Kiewa, Dale R. Nyholt, Jonathan R.I. Coleman, Jordan W. Smoller, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, Jian Yang, Peter M. Visscher, and Naomi R. Wray



- Random effects models > fixed effects models
- Mixture models > non-mixture (infinitesimal) models

# Bayesian methods for PGS

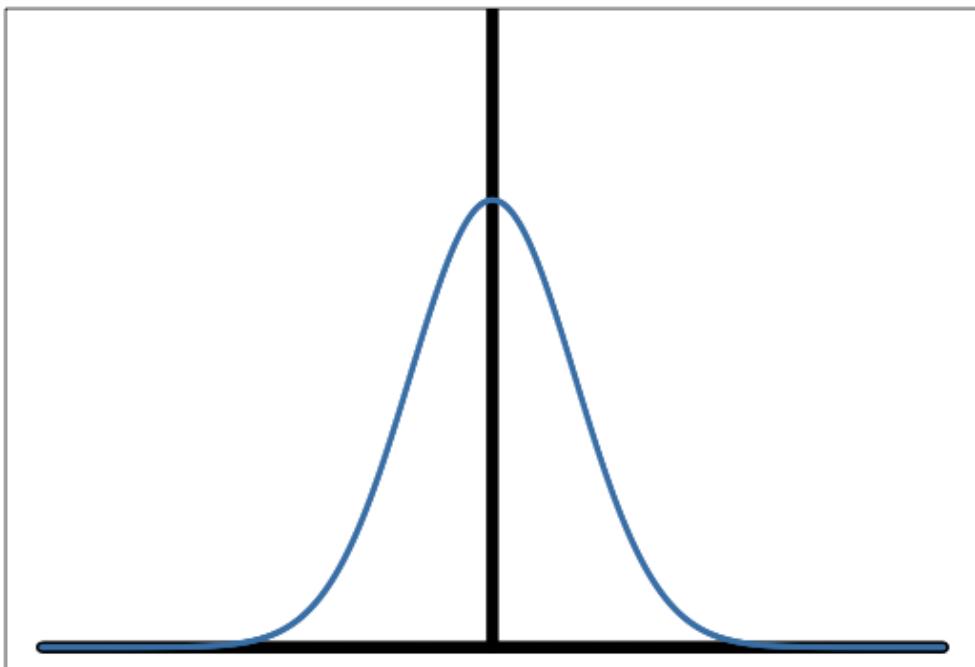
- Bayesian methods can estimate all parameters including SNP effects simultaneously
- Allow alternative assumptions regarding the distribution of SNP effects
- Different Bayesian methods mainly differ in
  - Assumption of the SNP effect distribution
  - Implementation

# Assumptions for SNP effect distribution

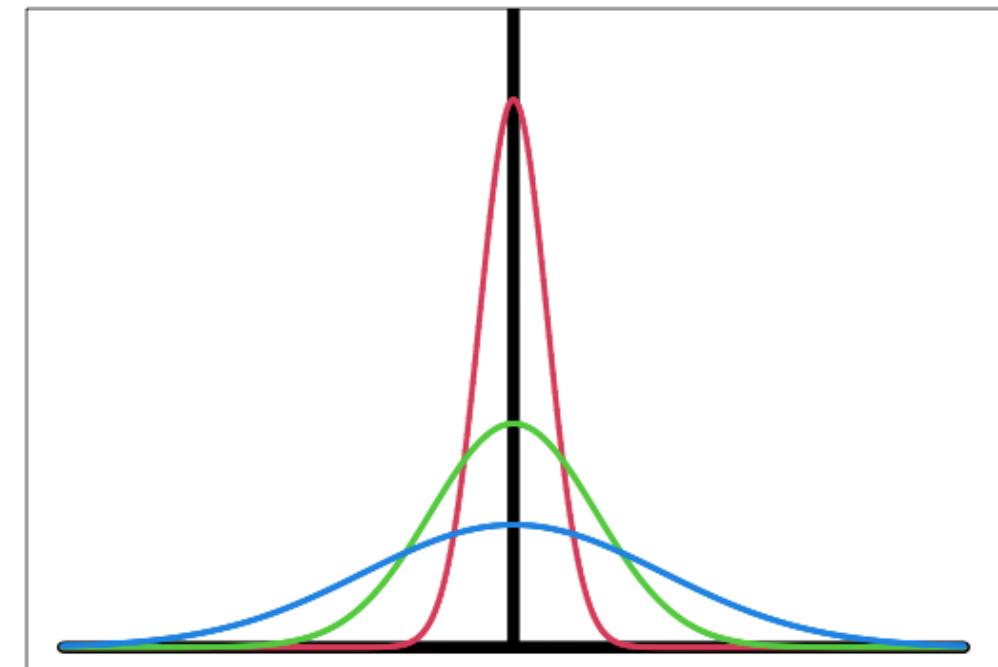
| Assumption                                                                            | Distribution of SNP effects                            | Method           |
|---------------------------------------------------------------------------------------|--------------------------------------------------------|------------------|
| <b>Infinite number of small effects</b>                                               | Normal distribution                                    | BLUP/LDpred2-inf |
| <b>Small number of moderate to large effects, many small effects</b>                  | Student's t distribution,<br>hierarchical distribution | BayesA/PRS-CS    |
| <b>Small number of small effects, many zero effects</b>                               | Mixture, spike at zero,<br>normal distribution         | LDpred2/BayesC   |
| <b>Many zero effects, proportion of small effects, some moderate to large effects</b> | Mixture, multiple normals                              | BayesR           |

# Assumptions for SNP effect distribution

BayesC



BayesR



*How to incorporate this prior knowledge in the estimation of SNP effects?*

## Bayes theorem

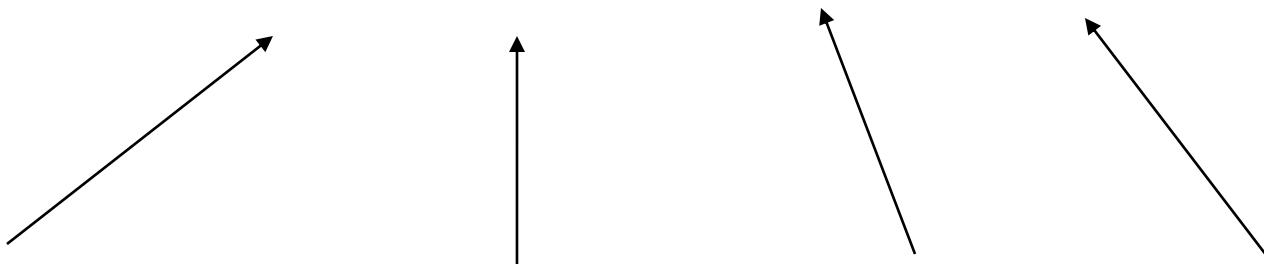
$$P(x | y) \propto P(y | x)P(x)$$

Probability of  
parameters x given  
the data y (**posterior**)

Is proportional to

Probability of  
data y given the  
x (**likelihood** of  
data)

**Prior**  
probability  
of x



# Introduction to Bayesian methods

Consider an experiment where we measure height of 10 people  
**to estimate average height**

We want to use prior knowledge from many previous studies that average height is 174cm with standard error 5cm

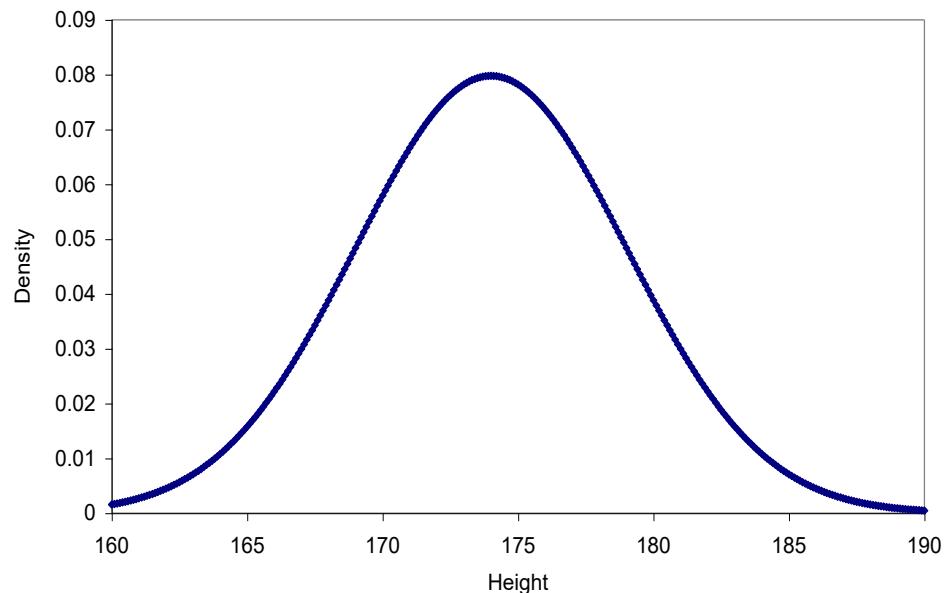
$$y = \text{average height} + e$$

## Bayes theorem

$$P(x | y) \propto P(y | x)P(x)$$



Prior probability of x (average height)



# Introduction to Bayesian methods

## Bayes theorem

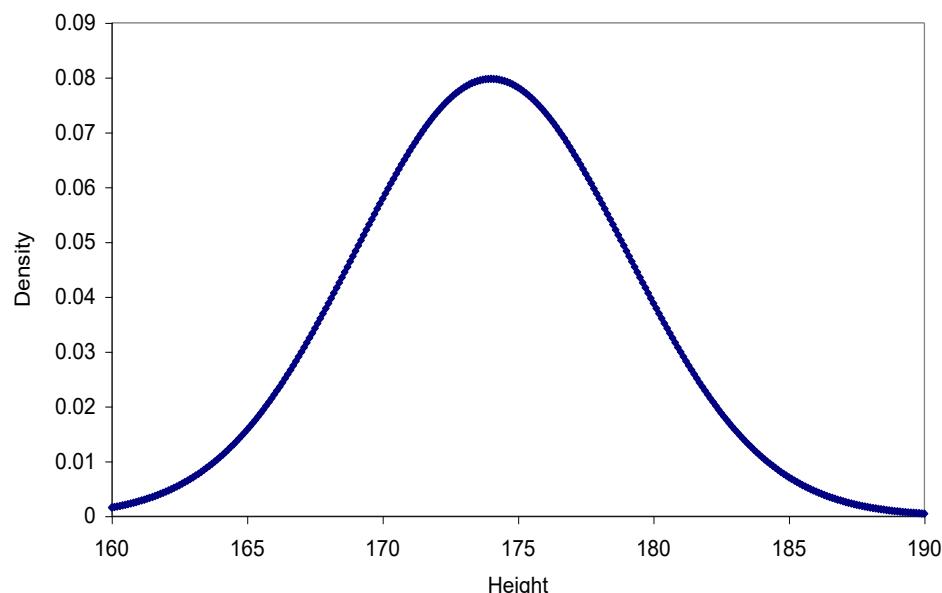
$$P(x | y) \propto P(y | x)P(x)$$

From the data.....

$$\bar{x} = 178$$

$$s.e = 5$$

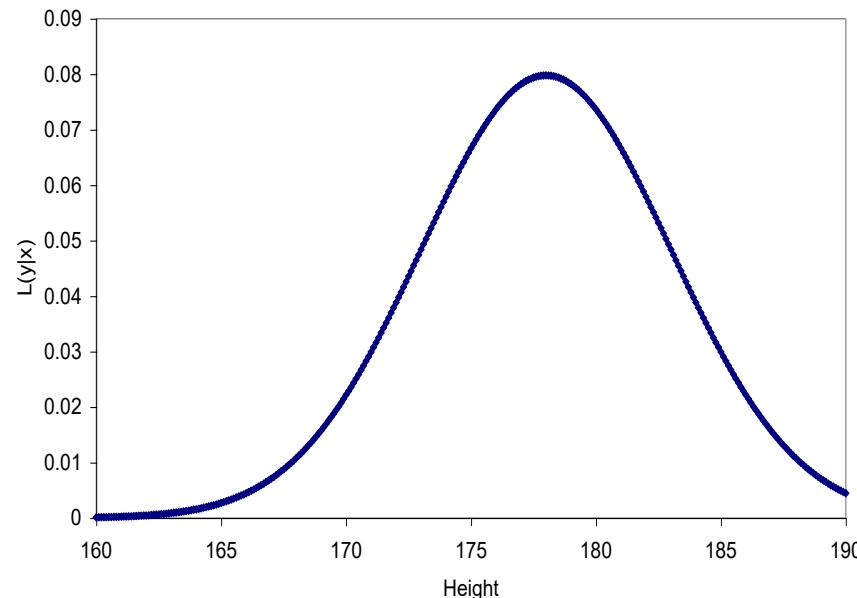
↑  
Prior probability of x (average height)



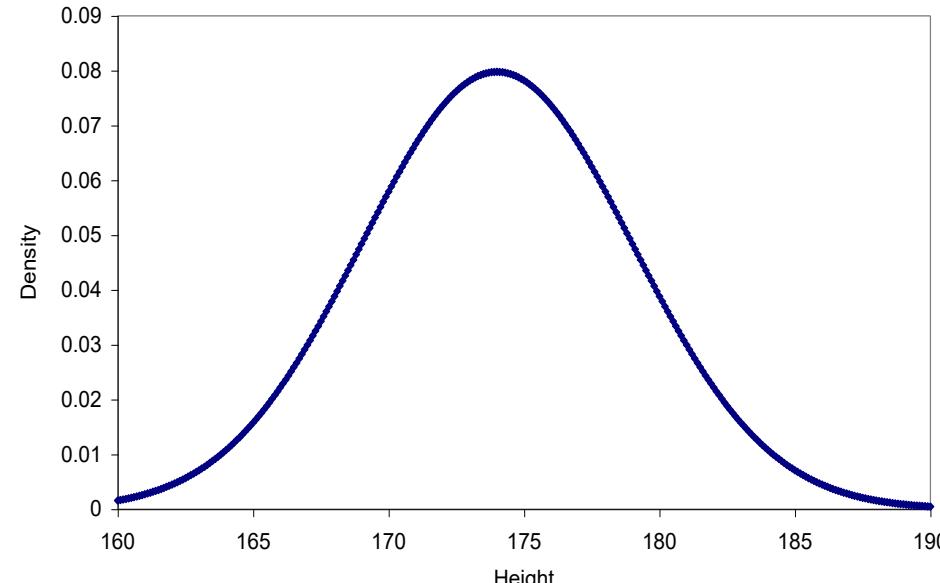
## Bayes theorem

$$P(x | y) \propto P(y | x)P(x)$$

Likelihood of data (y) given height x, most likely x = 178cm



Prior probability of x (average height)

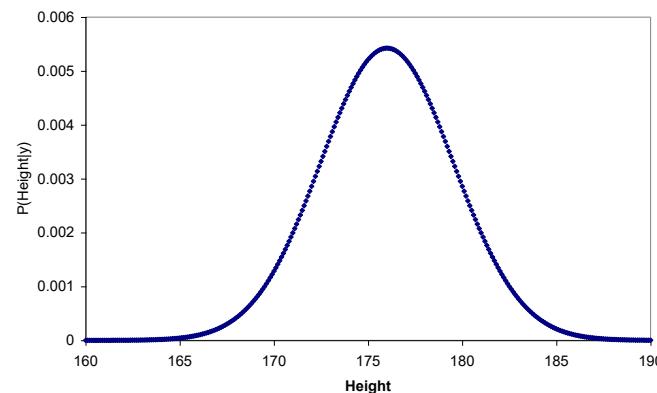


# Introduction to Bayesian methods

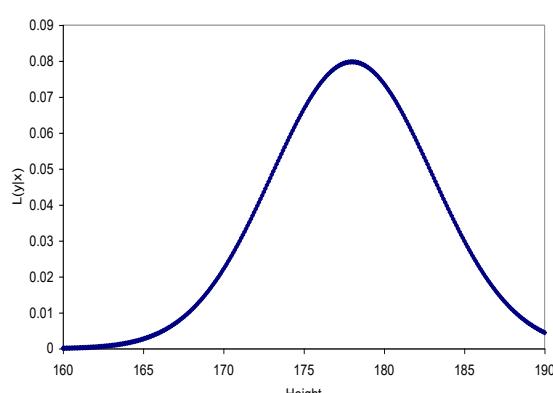
## Bayes theorem

$$P(x | y) \propto P(y | x)P(x)$$

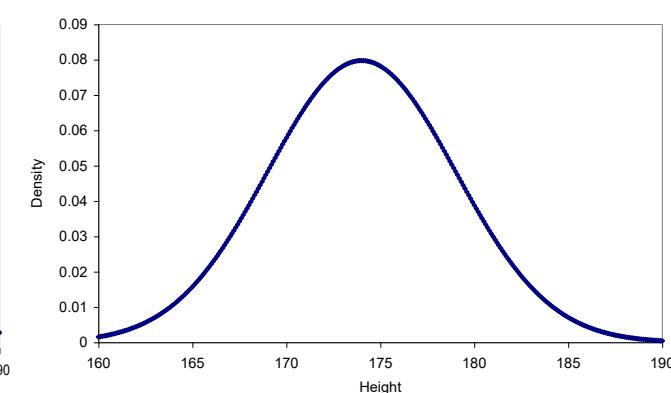
$P(x|y)$  mean = 176cm



$L(y|x)$



$P(x)$

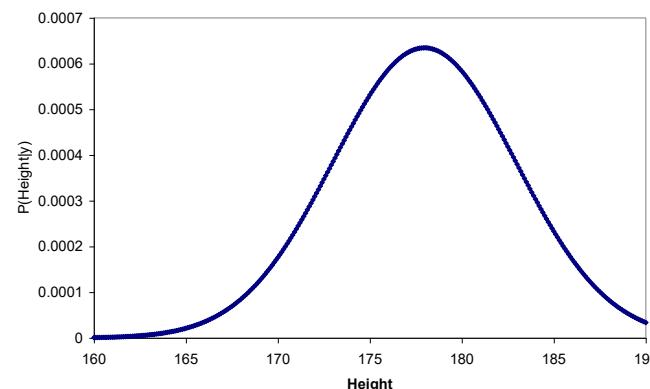


# Introduction to Bayesian methods

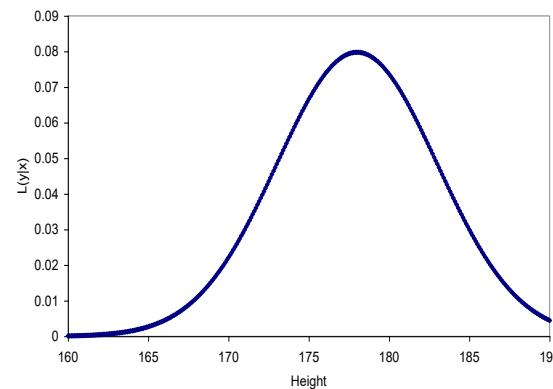
Less certainty about prior information? Use *less informative (flat) prior*

$$P(x | y) \propto P(y | x)P(x)$$

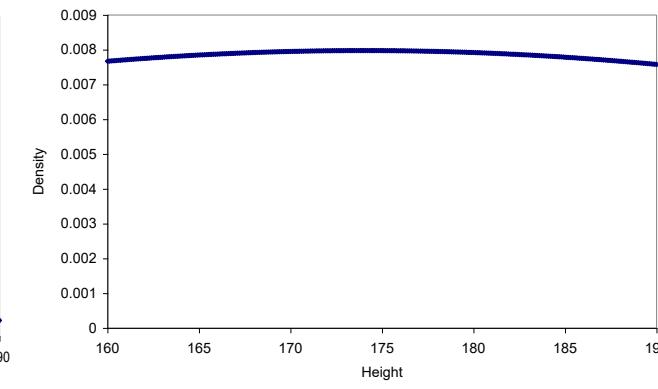
$P(x|y)$  mean = 178cm



$L(y|x)$



$P(x)$

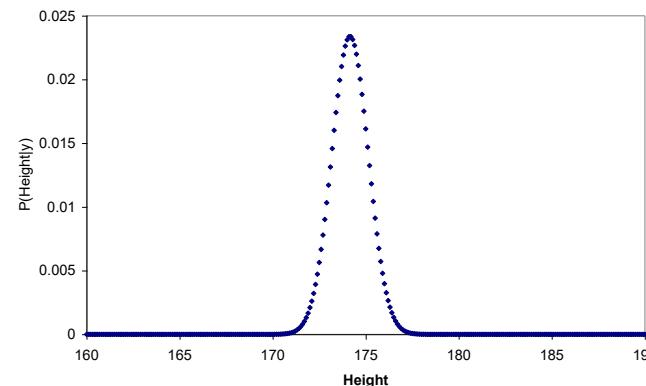


# Introduction to Bayesian methods

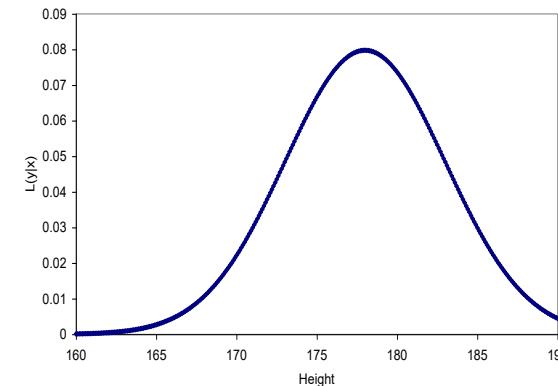
More certainty about prior information? Use *more informative* prior

$$P(x | y) \propto P(y | x)P(x)$$

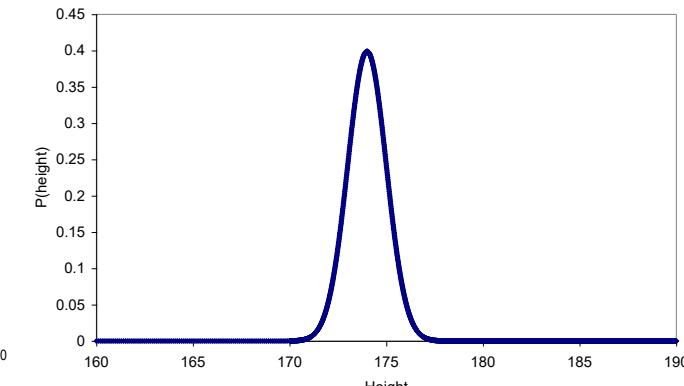
$P(x|y)$  mean = 174.5cm



$L(y|x)$



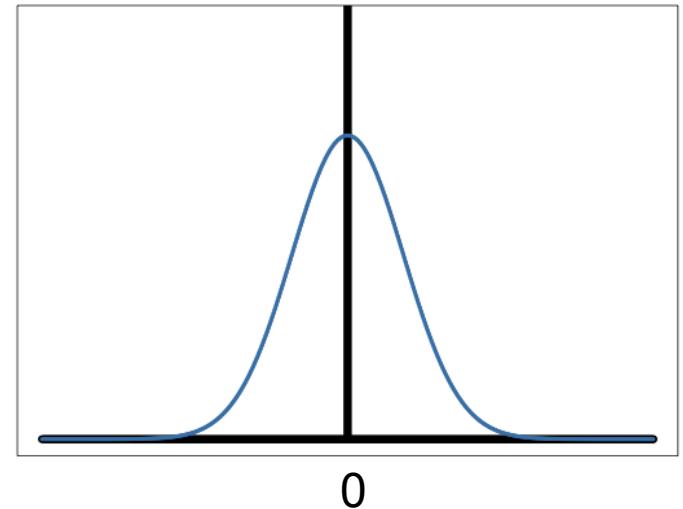
$P(x)$



# Model

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

$$\beta_j \begin{cases} \sim N(0, \sigma_\beta^2) & \text{with probability } \pi \\ = 0 & \text{with probability } 1 - \pi \end{cases}$$



# Posterior inference on SNP effects

$$P(\boldsymbol{\beta}|y) \propto P(y|\boldsymbol{\beta})P(\boldsymbol{\beta})$$

$$\propto (\sigma_e^2)^{-\frac{n}{2}} \exp\left\{-\frac{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{2\sigma_e^2}\right\} \prod_{j=1}^m \left[ (\sigma_\beta^2)^{-\frac{1}{2}} \exp\left\{-\frac{\beta_j^2}{2\sigma_\beta^2}\right\} \pi + \varphi_0(1 - \pi) \right]$$

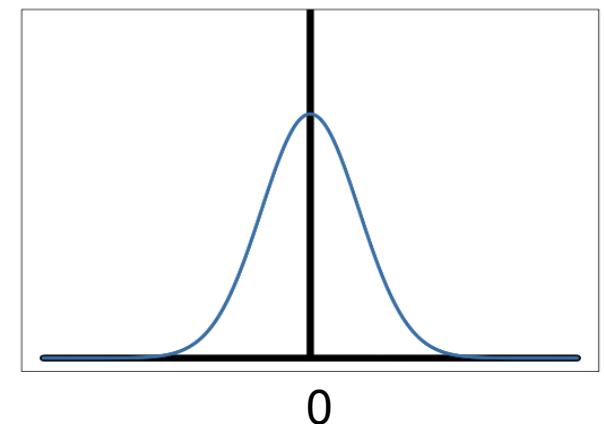
SNP effect estimates:

$$\hat{\boldsymbol{\beta}} = E(\boldsymbol{\beta}|y) = \int \boldsymbol{\beta} P(\boldsymbol{\beta}|y) d\boldsymbol{\beta}$$

$$= \int_{\beta_1} \dots \int_{\beta_m} (\sigma_e^2)^{-\frac{n}{2}} \exp\left\{-\frac{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{2\sigma_e^2}\right\} \prod_{j=1}^m \left[ (\sigma_\beta^2)^{-\frac{1}{2}} \exp\left\{-\frac{\beta_j^2}{2\sigma_\beta^2}\right\} \pi + \varphi_0(1 - \pi) \right] d\beta_1 \dots d\beta_m$$

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

$$\beta_j \begin{cases} \sim N(0, \sigma_\beta^2) & \text{with probability } \pi \\ = 0 & \text{with probability } 1 - \pi \end{cases}$$



# Posterior inference on SNP effects

$$\hat{\beta} = E(\beta | \mathbf{y}) = \int_{\beta_1} \dots \int_{\beta_m} (\sigma_e^2)^{-\frac{n}{2}} \exp \left\{ -\frac{(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)}{2\sigma_e^2} \right\} \prod_{j=1}^m \left[ (\sigma_\beta^2)^{-\frac{1}{2}} \exp \left\{ -\frac{\beta_j^2}{2\sigma_\beta^2} \right\} \pi + \varphi_0(1 - \pi) \right] d\beta_1 \dots d\beta_m$$

- Cannot solve directly  $\rightarrow$  no closed form solution
- Estimates of parameters depend on other parameters
- Use Markov chain Monte Carlo (MCMC) algorithm!

## Markov chain

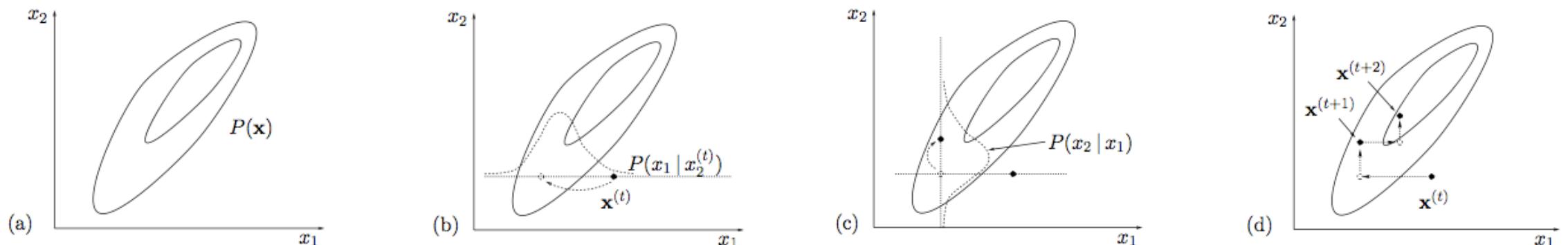
A sequence of samples where each sample depends only on the previous one (memoryless). This property allows the algorithm to gradually explore the distribution.

## Monte Carlo

Using random sampling to perform numerical estimation, e.g., integrating over a probability distribution by averaging over samples.

## Gibbs Sampling

A special case of MCMC to sample from posterior distribution of each parameter **conditional** on all other parameters.



The key is to derive  $P(x_1 | x_2)$  and  $P(x_2 | x_1)$

Figure source

To run Gibbs sampling, we need to derive the full conditional distribution for each parameter

$$\bullet \quad P(\mu | \mathbf{y}, \boldsymbol{\beta}, \sigma_{\beta}^2, \pi, \sigma_e^2) \quad \mathbf{y} = \mathbf{1}\mu + \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

$$\bullet \quad P(\beta_j | \mathbf{y}, \boldsymbol{\beta}_{-j}, \sigma_{\beta}^2, \pi, \sigma_e^2)$$

$$\bullet \quad P(\sigma_{\beta}^2 | \mathbf{y}, \boldsymbol{\beta}, \pi, \sigma_e^2)$$

$$\beta_j \begin{cases} \sim N(0, \sigma_{\beta}^2) & \text{with probability } \pi \\ = 0 & \text{with probability } 1 - \pi \end{cases}$$

$$\bullet \quad P(\pi | \mathbf{y}, \boldsymbol{\beta}, \sigma_{\beta}^2, \sigma_e^2)$$

$$\bullet \quad P(\sigma_e^2 | \mathbf{y}, \boldsymbol{\beta}, \sigma_{\beta}^2, \pi)$$

# Gibbs sampling

- Set starting values for  $(\mu, \boldsymbol{\delta}, \boldsymbol{\beta}, \sigma_{\beta}^2, \pi, \sigma_e^2)$
- Then (for many iterations)
  - For each SNP, sample  $\delta_j, \beta_j$  conditional on other parameters
  - Sample  $\mu, \sigma_{\beta}^2, \pi, \sigma_e^2$  with updated  $\boldsymbol{\delta}, \boldsymbol{\beta}$

Samples reconstruct posterior distributions of parameters

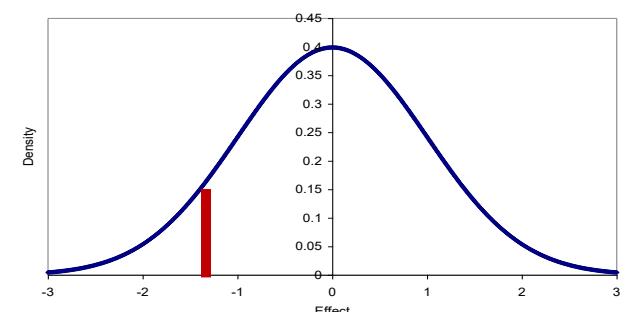
# Gibbs Sampling

For example, for SNP effect  $\beta_j$

- First sample if in zero or nonzero effect component of distribution ( $\delta_j$ )
- Then if in nonzero component of the distribution, sample from

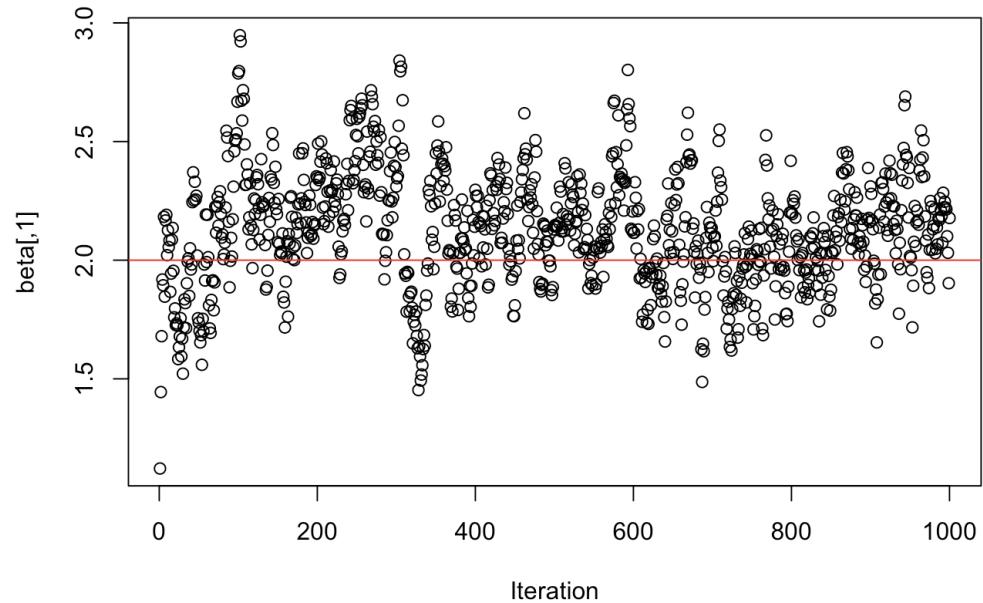
$$N\left(\frac{\mathbf{X}'_j(\mathbf{y} - \mathbf{1}_n\mu - \sum_{k \neq j} \mathbf{X}'_k \beta_k)}{\mathbf{X}'_j \mathbf{X}_j + \boxed{\sigma_e^2 / \sigma_\beta^2}}, \sigma_e^2 / (\mathbf{X}'_j \mathbf{X}_j + \sigma_e^2 / \sigma_\beta^2)\right)$$


Introduce shrinkage

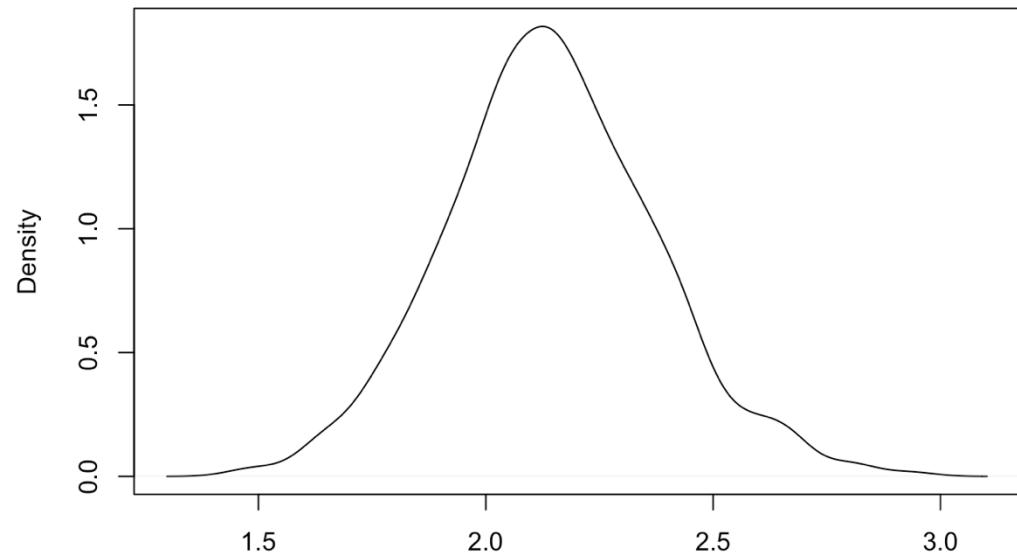


# Gibbs sampling

Trace plot



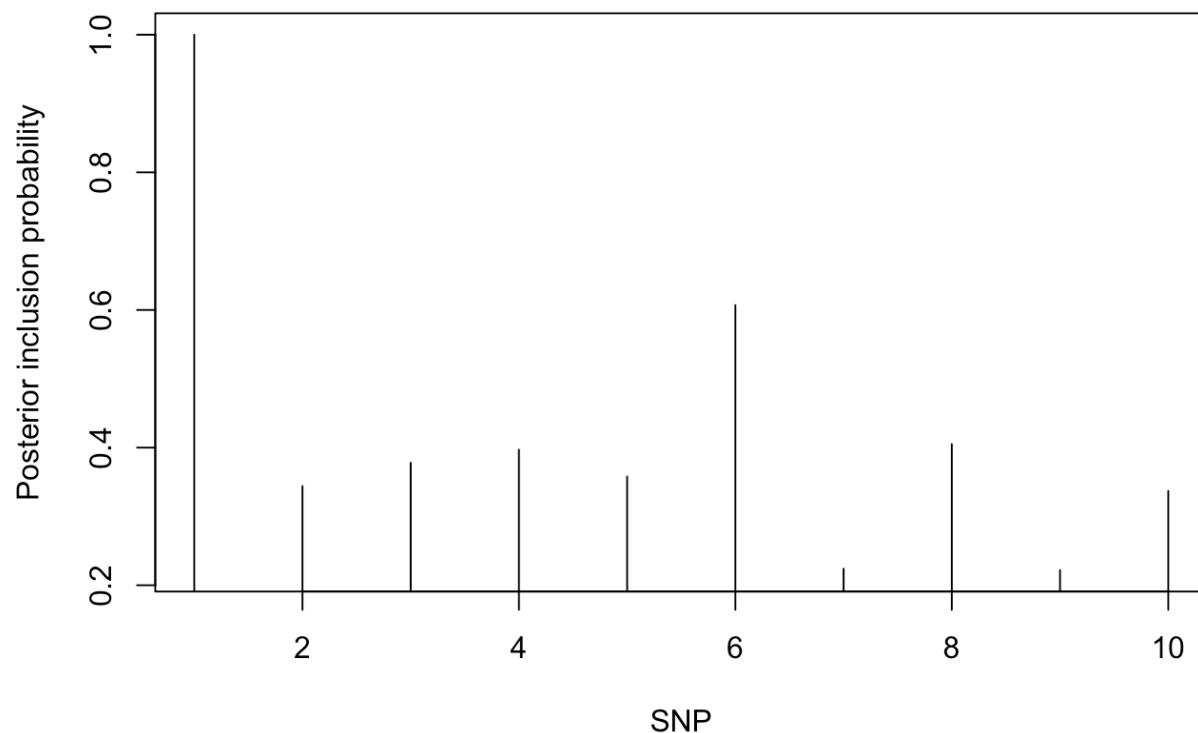
Posterior distribution



Posterior mean is used as the point estimate of the SNP effect

# As a method of fine-mapping

Posterior inclusion probability (PIP):  
probability that the SNP is included in the model with a nonzero effect.

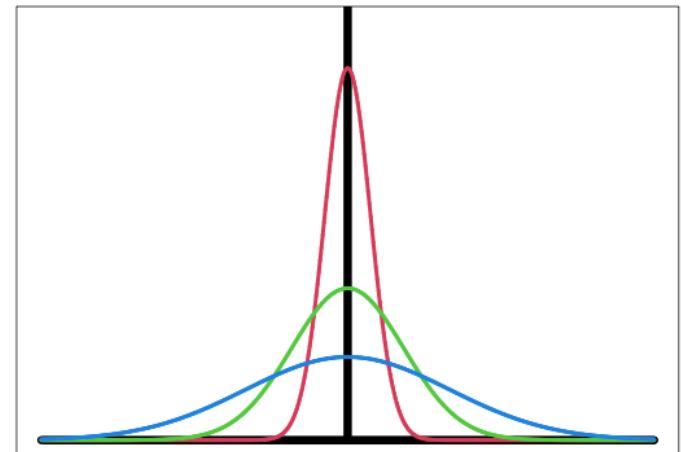


# Model

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

$$\beta_j | \pi, \sigma_\beta^2 = \begin{cases} 0 & \text{with probability } \pi_1, \\ \sim N(0, \gamma_2 \sigma_\beta^2) & \text{with probability } \pi_2, \\ \vdots \\ \sim N(0, \gamma_C \sigma_\beta^2) & \text{with probability } 1 - \sum_{c=1}^{C-1} \pi_c, \end{cases}$$

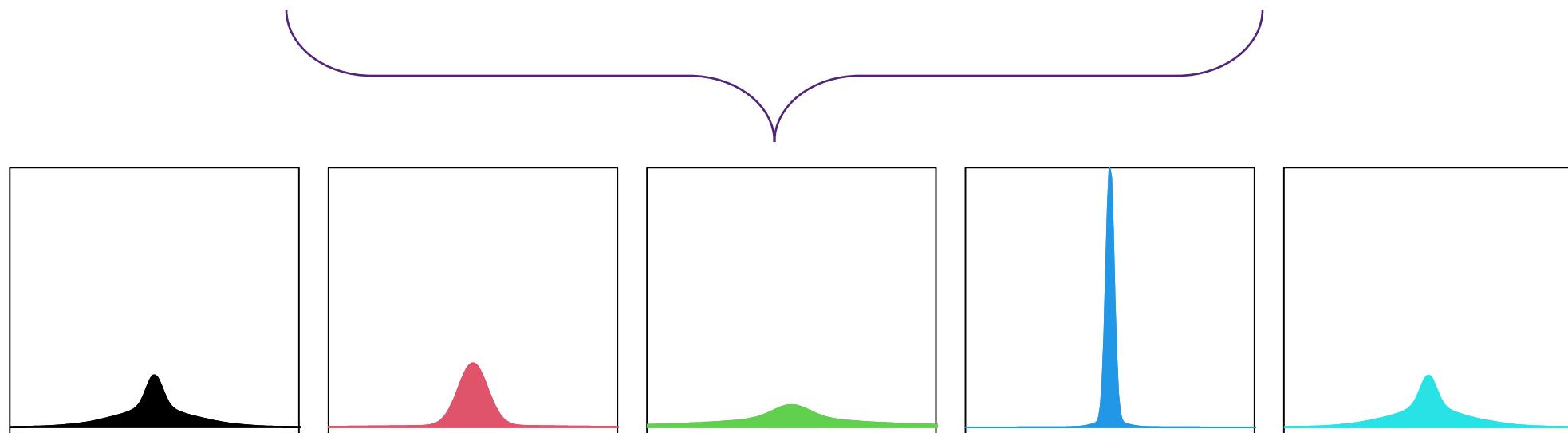
$$\boldsymbol{\gamma} = (0, 0.01, 0.1, 1.0)'$$



BayesC is a special case of BayesR with two components

# Why use multi-normal mixture?

$$\beta_j \sim \pi_1 \begin{array}{|c|c|}\hline & \\ \hline & \\ \hline \end{array} + \pi_2 \begin{array}{|c|}\hline \textcolor{red}{\text{---}} \\ \hline \textcolor{red}{\text{---}} \\ \hline \textcolor{red}{\text{---}} \end{array} + \pi_3 \begin{array}{|c|}\hline \textcolor{green}{\text{---}} \\ \hline \textcolor{green}{\text{---}} \\ \hline \textcolor{green}{\text{---}} \end{array} + \pi_4 \begin{array}{|c|}\hline \textcolor{blue}{\text{---}} \\ \hline \textcolor{blue}{\text{---}} \\ \hline \textcolor{blue}{\text{---}} \end{array}$$



Account for almost any distribution!

# Practical Exercise Part 1: BayesR

<https://gctbhub.cloud.edu.au/data/teaching/>

# Bayesian methods using GWAS summary statistics (sumstats)

- Best prediction methods take genetic values as random effect.
- These methods require individual genotypes and phenotypes.
- These data are often not publicly accessible.
- Computationally demanding with large # individuals/SNPs.
- Could be addressed by using GWAS summary statistics (**sumstats**).
- Methodology in human genetics has moved forward to use GWAS sumstats only.

### Perspective

## Workshop proceedings: GWAS summary statistics standards and sharing

Jacqueline A.L. MacArthur,<sup>1,2,\*</sup> Annalisa Buniello,<sup>1</sup> Laura W. Harris,<sup>1</sup> James Hayhurst,<sup>1</sup> Aoife McMahon,<sup>1</sup> Elliot Sollis,<sup>1</sup> Maria Cerezo,<sup>1</sup> Peggy Hall,<sup>3</sup> Elizabeth Lewis,<sup>1</sup> Patricia L. Whetzel,<sup>1</sup> Orli G. Bahcall,<sup>4</sup> Inès Barroso,<sup>5</sup> Robert J. Carroll,<sup>6</sup> Michael Inouye,<sup>7,8,9</sup> Teri A. Manolio,<sup>3</sup> Stephen S. Rich,<sup>10</sup> Lucia A. Hindorff,<sup>3</sup> Ken Wiley,<sup>3</sup> and Helen Parkinson<sup>1,\*</sup>

**Table 1. Recommended standard reporting elements for GWAS SumStats**

| Data element                | Column header           | Mandatory/Optional                                                                         |
|-----------------------------|-------------------------|--------------------------------------------------------------------------------------------|
| variant id                  | variant_id              | One form of variant ID                                                                     |
| chromosome                  | chromosome              | is mandatory, either rsID or chromosome, base pair location, and genome build <sup>a</sup> |
| base pair location          | base_pair_location      |                                                                                            |
| p value                     | p_value                 | Mandatory                                                                                  |
| effect allele               | effect_allele           | Mandatory                                                                                  |
| other allele                | other_allele            | Mandatory                                                                                  |
| effect allele frequency     | effect_allele_frequency | Mandatory                                                                                  |
| effect (odds ratio or beta) | odds_ratio or beta      | Mandatory                                                                                  |
| standard error              | standard_error          | Mandatory                                                                                  |
| upper confidence interval   | ci_upper                | Optional                                                                                   |
| lower confidence interval   | ci_lower                | Optional                                                                                   |

2021

 Check for updates

## Genome-wide association studies

Emil Uffelmann<sup>1</sup>, Qin Qin Huang<sup>1</sup>, Nchangwi Syntia Munung<sup>1</sup>, Jantina de Vries<sup>3</sup>, Yukinori Okada<sup>1,4,5</sup>, Alicia R. Martin<sup>6,7,8</sup>, Hilary C. Martin<sup>2</sup>, Tuuli Lappalainen<sup>9,10,12</sup> and Danielle Posthuma<sup>1,11</sup> 

**Table 3 | Databases of GWAS summary statistics**

| Database                    | Content                                                                                                                 |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------|
| GWAS Catalog <sup>110</sup> | GWAS summary statistics and GWAS lead SNPs reported in GWAS papers                                                      |
| GeneAtlas <sup>8</sup>      | UK Biobank GWAS summary statistics                                                                                      |
| Pan UKBB                    | UK Biobank GWAS summary statistics                                                                                      |
| GWAS Atlas <sup>273</sup>   | Collection of publicly available GWAS summary statistics with follow-up in silico analysis                              |
| FinnGen results             | GWAS summary statistics released from FinnGen, a project that collected biological samples from many sources in Finland |
| dbGAP                       | Public depository of National Institutes of Health-funded genomics data including GWAS summary statistics               |
| OpenGWAS database           | GWAS summary data sets                                                                                                  |
| Pheweb.jp                   | GWAS summary statistics of Biobank Japan and cross-population meta-analyses                                             |

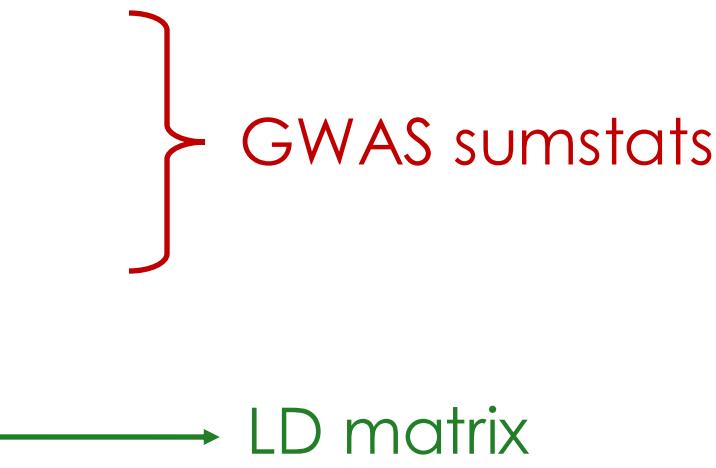
For a comprehensive list of genetic data resources, see REF.<sup>13</sup>. GWAS, genome-wide association studies; SNP, single-nucleotide polymorphism.

## What are the minimum data required?

Given the standard GWAS with genotypes being allelic counts (0/1/2), the minimum data required for PGS prediction include:

- SNP marginal effect estimates
- Standard errors
- GWAS sample size

• LD correlations among SNPs



GWAS sumstats

LD matrix

## SNP marginal effect estimates

GWAS estimates effect of each SNP one at a time from single SNP regression, so the estimate is marginal to (unconditional on) other SNPs.

$$b_j = (\mathbf{X}'_j \mathbf{X}_j)^{-1} \mathbf{X}'_j \mathbf{y}$$

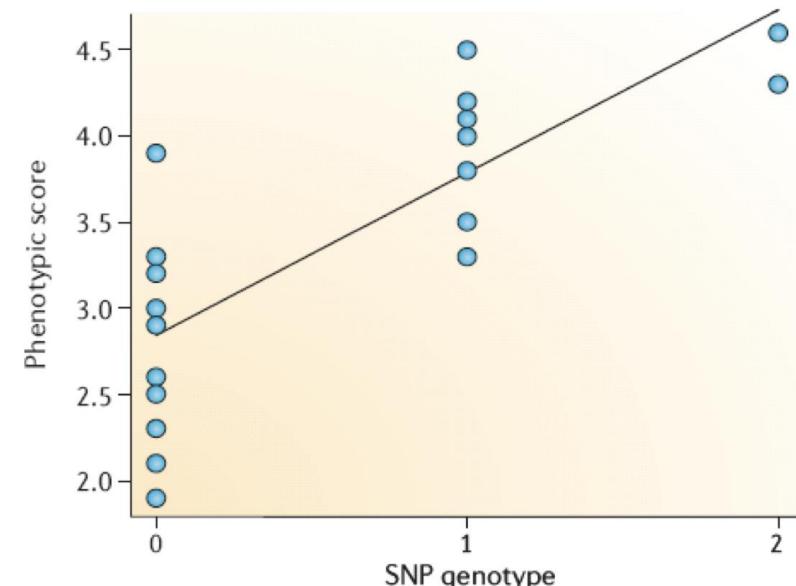
Assuming  $\mathbf{X}$  has been standardised with column mean zero and variance one, then

$$\mathbf{X}'_j \mathbf{X}_j = n \text{Var}(\mathbf{X}_j) = n$$

And

$$b_j = \frac{1}{n} \mathbf{X}'_j \mathbf{y}$$

Note that it has the inner product of the SNP genotypes and the phenotypes.



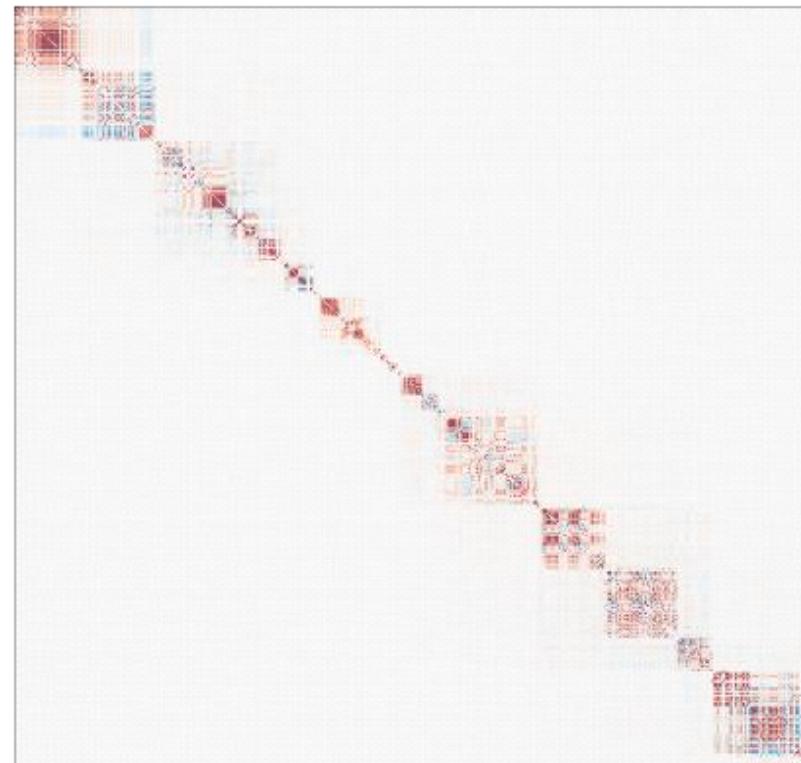
## Linkage disequilibrium (LD) correlations

Usually obtained from a reference population

LD correlation matrix

$$\mathbf{R} = \frac{1}{n} \mathbf{X}' \mathbf{X}$$

assuming  $\mathbf{X}$  is standardised  
with mean zero and  
variance one



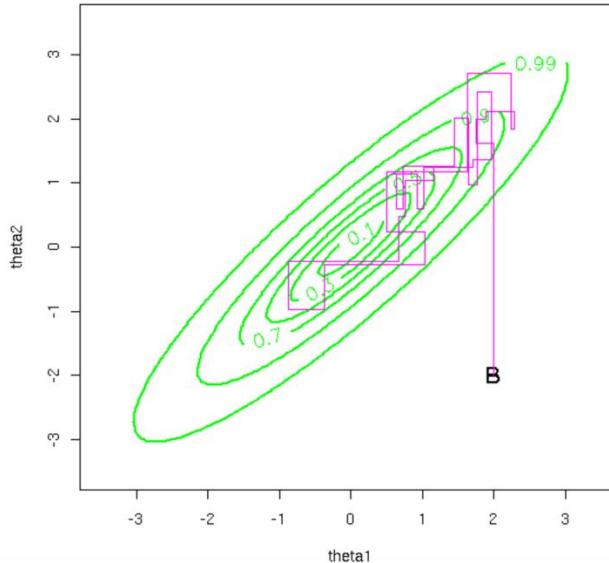
# Compare BayesR and SBayesR algorithms

## Gibbs sampling

Full conditional distribution for  $\beta_j$ , if in a nonzero dist'n,

$$f(\beta_j | \mathbf{b}, \text{else}) = N\left(\frac{r_j}{C_j}, \frac{\sigma_e^2}{C_j}\right)$$

where



### Individual-level data

$$r_j = \mathbf{X}'_j \left( \mathbf{y} - \sum_{k \neq j} \mathbf{X}_k \beta_k \right)$$

$$C_j = \mathbf{X}'_j \mathbf{X}_j + \frac{\sigma_e^2}{\gamma_j \sigma_\beta^2}$$

### Summary-level data

$$r_j = \mathbf{n} b_j - \sum_{k \neq j} \mathbf{n} R_{jk} \beta_k$$

$$C_j = \mathbf{n} + \frac{\sigma_e^2}{\gamma_j \sigma_\beta^2}$$

# Compare BayesR and SBayesR algorithms

All  $\mathbf{X}'\mathbf{y}$  and  $\mathbf{X}'\mathbf{X}$  can be replaced by  $n\mathbf{b}$  and  $n\mathbf{R}$

## Algorithm 1 – Individual level data algorithm

Initialise parameters and read genotypes and phenotypes in PLINK binary format  
 Initialise  $\mathbf{y}^* = \mathbf{y} - \mathbf{X}\beta$   
**for**  $i := 1$  to number of iterations **do**  
     **for**  $i := 1$  to  $p$  **do**  
         Calculate  $r_j^* = \mathbf{x}_j'\mathbf{y}^*$   
         Calculate  $r_j = r_j^* + \mathbf{x}_j'\mathbf{x}_j\beta_j^{(i-1)}$   
         Calculate  $\sigma_c^2 = \sigma_\beta^2 \gamma_{\delta_j=c}$  for each of  $C$  classes (e.g., BayesR  $C=4$  and  $\gamma = (0, 0.0001, 0.001, 0.01)$ )  
         Calculate the left hand side  $l_{jc} = \mathbf{x}_j'\mathbf{x}_j + \frac{\sigma_c^2}{\sigma_\beta^2}$  for each of the  $C$  classes  
         Calculate the log densities of given  $\delta_j = c$  using  $\log(\mathcal{L}_c) = -\frac{1}{2} \left[ \log \left( \frac{\sigma_c^2 l_{jc}}{\sigma_\beta^2} \right) - \frac{r_j^2}{\sigma_c^2 l_{jc}} \right] + \log(\pi_c)$ , where  $\pi_c$  is the current  
         Calculate the full conditional posterior probability for  $\delta_j = c$  for  $C$  classes with  $\mathbb{P}(\delta_j = c | \theta, \mathbf{y}) = \frac{1}{\sum_{l=1}^C \exp[\log(\mathcal{L}_l) - \log(\mathcal{L}_c)]}$   
         Using full conditional posterior probabilities sample class membership for  $\beta_j^{(i)}$  using categorical random variable sampler  
         Given class sample SNP effect  $\beta_j^{(i)}$  from  $N \left( \frac{r_j}{l_{jc}}, \frac{\sigma_c^2}{l_{jc}} \right)$   
         Given SNP effect adjust corrected phenotype side  $(\mathbf{y}^*)^{(i)} = (\mathbf{y}^*)^{(i-1)} - \mathbf{x}_j \left( \beta_j^{(i)} - \beta_j^{(i-1)} \right)$   
     **od**  
     Sample update from full conditional for  $\sigma_\beta^2$  from scaled inverse chi-squared distribution  $\tilde{\nu}_\beta = \nu_\beta + q$  and  $\tilde{S}^2_\beta = \frac{\nu_\beta S_\beta^2 + \sum_{j=1}^q \beta_j^{(i)} \beta_j^{(i)}}{\nu_\beta + q}$ ,  
     where  $q$  is the number of non-zero variants  
     Sample update from full conditional for  $\sigma_e^2$  from scaled inverse chi-squared distribution  $\tilde{\nu}_e = n + \nu_e$   
     and scale parameter  $\tilde{\sigma}_e^2 = \frac{SSE + \nu_e S_\beta^2}{n + \nu_e}$  and  $SSE = \mathbf{y}'\mathbf{y}^*$   
     Sample update from full conditional for  $\pi$ , which is Dirichlet( $C, \mathbf{c} + \boldsymbol{\alpha}$ ), where  $\mathbf{c}$  is a vector of length  $C$  and contains the counts  
     of the number of variants in each variance class and  $\boldsymbol{\alpha} = (1, \dots, 1)$   
     Calculate genetic variance for  $h_{SNP}^2$  calculation using  $\sigma_g^2 = \text{Var}(\mathbf{X}\beta)$   
     Calculate  $h_{SNP}^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_e^2}$   
     **od**

## Algorithm 2 Summary data algorithm

Initialise parameters and read summary statistics  
 Reconstruct  $\mathbf{X}'\mathbf{X}$  and  $\mathbf{X}'\mathbf{y}$  from summary statistics and LD reference panel  
 Calculate  $\mathbf{r}^* = \mathbf{X}'\mathbf{y} - \mathbf{X}'\mathbf{X}\beta$   
**for**  $i := 1$  to number of iterations **do**  
     **for**  $i := 1$  to  $p$  **do**  
         Calculate  $\mathbf{r}_j = \mathbf{r}_j^* + \mathbf{x}_j'\mathbf{x}_j\beta_j$   
         Calculate  $\sigma_c^2 = \sigma_\alpha^2 \gamma_{\delta_j=c}$  for each of  $C$  classes (e.g., SBayesR  $C=4$  and  $\gamma = (0, 0.01, 0.1, 1)'$ )  
         Calculate the left hand side  $l_{jc} = \mathbf{x}_j'\mathbf{x}_j + \frac{\sigma_c^2}{\sigma_\alpha^2}$  for each of the  $C$  classes  
         Calculate the log densities of given  $\delta_j = c$  using  $\log(\mathcal{L}_c) = -\frac{1}{2} \left[ \log \left( \frac{\sigma_c^2 l_{jc}}{\sigma_\alpha^2} \right) - \frac{r_j^2}{\sigma_c^2 l_{jc}} \right] + \log(\pi_c)$ , where  $\pi_c$  is the current  
         Calculate the full conditional posterior probability for  $\delta_j = c$  for  $C$  classes with  $\mathbb{P}(\delta_j = c | \theta, \mathbf{y}) = \frac{1}{\sum_{l=1}^C \exp[\log(\mathcal{L}_l) - \log(\mathcal{L}_c)]}$   
         Using full conditional posterior probabilities sample class membership for  $\beta_j^{(i)}$  using categorical random variable sampler  
         Given class sample SNP effect  $\beta_j^{(i)}$  from  $N \left( \frac{r_j}{l_{jc}}, \frac{\sigma_c^2}{l_{jc}} \right)$   
         Given SNP effect adjust corrected right hand side  $(\mathbf{r}^*)^{(i+1)} = (\mathbf{r}^*)^{(i)} - \mathbf{X}'\mathbf{x}_j \left( \beta_j^{(i+1)} - \beta_j^{(i)} \right)$ .  $\mathbf{X}'\mathbf{x}_j$  is the  $j$ th column of  $\mathbf{X}'\mathbf{X}$ .  
     **od**  
     Sample update from full conditional for  $\sigma_\alpha^2$  from scaled inverse chi-squared distribution  $\tilde{\nu}_\alpha = \nu_0 + q$  and  $\tilde{\sigma}^2_\alpha = \frac{\nu_0 \tau_0^2 + \sum_{j=1}^q \beta_j^{(i)} \beta_j^{(i)}}{\nu_0 + q}$ ,  
     where  $q$  is the number of non-zero variants  
     Sample update from full conditional for  $\sigma_e^2$  from scaled inverse chi-squared distribution  $\tilde{\nu}_e = n + \nu_e$   
     and scale parameter  $\tilde{\sigma}_e^2 = \frac{SSE + \nu_e \tau_0^2}{n + \nu_e}$  and  $SSE = \mathbf{y}'\mathbf{y} - \beta'\mathbf{r}^* - \beta'\mathbf{X}'\mathbf{y}$   
     Sample update from full conditional for  $\pi$ , which is Dirichlet( $C, \mathbf{c} + \boldsymbol{\alpha}$ ), where  $\mathbf{c}$  is a vector of length  $C$  and contains the counts  
     of the number of variants in each variance class.  
     Calculate genetic variance for  $h_{SNP}^2$  calculation using  $\sigma_g^2 = MSS/n$ , where  $MSS = \hat{\beta}'\mathbf{X}'\mathbf{y} - \hat{\beta}'\mathbf{r}^*$   
     Calculate  $h_{SNP}^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_e^2}$   
     **od**

# From individual- to summary-level model

Consider an individual-data model with a standardised genotype matrix  $\mathbf{X}$ :

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

Multiply both sides by  $\frac{1}{n}\mathbf{X}'$  gives

$$\frac{1}{n}\mathbf{X}'\mathbf{y} = \frac{1}{n}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} + \frac{1}{n}\mathbf{X}'\mathbf{e}$$

$$\mathbf{b} = \mathbf{R}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

GWAS marginal SNP effects   LD correlation matrix 

$$Var(\boldsymbol{\epsilon}) = \frac{1}{n}\mathbf{R}\sigma_e^2$$

- In principle, SBayes and Bayes are equivalent methods when **same data** are used ( $\mathbf{X}'\mathbf{y}$  and  $\mathbf{X}'\mathbf{X}$  are sufficient statistics).
- However, when LD is estimated from a reference sample, SBayes is only an approximation to Bayes.
- Whether the difference is negligible depends on the heterogeneity in LD between the GWAS and LD ref samples.

# Assumptions regarding LD reference

LD reference population matches with GWAS population in genetics

- No systematic differences in LD → **same ancestry**
- Minimum sampling variance in LD → LD ref sample size cannot be too small



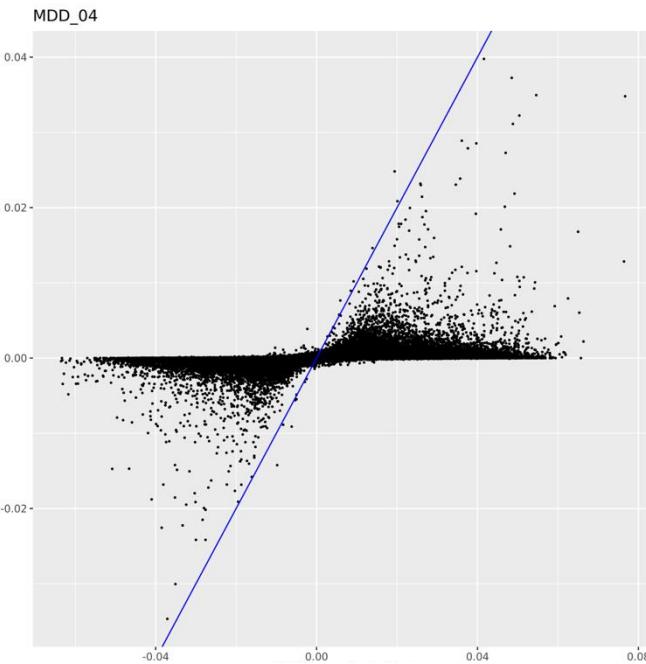
Failure to meet this assumption can result in a convergence issue!

# Always good to check SNP effect estimates

## GWAS marginal effect size vs. Estimated joint effect size

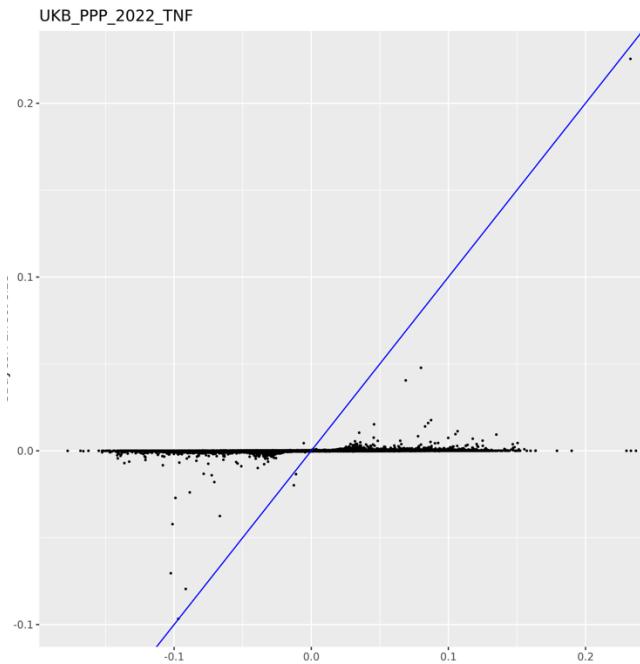
Most common 😊

Joint effect estimates



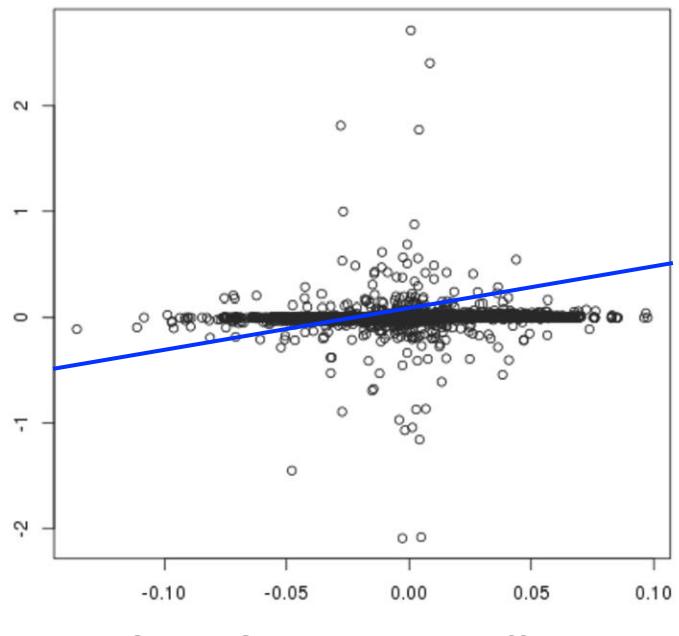
Presence of large effects 😊

Joint effect estimates



Bad convergence! 😢

Joint effect estimates



# How do different methods handle this issue?

- Run multiple MCMC chains with different starting values
  - e.g., LDpred2
- Force an (ad hoc) minimum strong shrinkage to SNP effects
  - e.g., PRS-CS
$$N \left( \frac{\mathbf{X}'_j(\mathbf{y} - \mathbf{1}_n\mu - \sum_{k \neq j} \mathbf{X}'_k \beta_k)}{\mathbf{X}'_j \mathbf{X}_j + \sigma_e^2 / \sigma_\beta^2}, \sigma_e^2 / (\mathbf{X}'_j \mathbf{X}_j + \sigma_e^2 / \sigma_\beta^2) \right)$$

the shrinkage parameter is set to be greater than a threshold value
- Regulate LD matrices
  - e.g., SBayesR uses chromosome-wide shrunk LD matrices
  - e.g., SBayesRC uses eigen-decomposed matrices from LD blocks

Bioinformatics, 2021, 1–8  
doi: 10.1093/bioinformatics/btaa1029  
Advance Access Publication Date: 16 December 2020  
Original Paper

OXFORD

---

Genetics and population analysis  
**LDpred2: better, faster, stronger**  
Florian Privé<sup>1,\*</sup>, Julyan Arbel<sup>2</sup> and Bjarni J. Vilhjálmsson<sup>1,3,\*</sup>

nature communications

Explore content ▾ About the journal ▾ Publish with us ▾

nature > nature communications > articles > article

Article | Open access | Published: 16 April 2019

**Polygenic prediction via Bayesian regression and continuous shrinkage priors**

Tian Ge , Chia-Yen Chen, Yang Ni, Yen-Chen Anne Feng & Jordan W. Smoller

Nature Communications 10, Article number: 1776 (2019) | Cite this article

70K Accesses | 1580 Citations | 53 Altmetric | Metrics

**nature**  
COMMUNICATIONS

ARTICLE  
<https://doi.org/10.1038/s41467-019-12653-w> OPEN

Improved polygenic prediction by Bayesian multiple regression on summary statistics

Luke R. Lloyd-Jones<sup>1,9\*</sup>, Jian Zeng<sup>1,9\*</sup>, Julia Sidorenko<sup>1,2</sup>, Loïc Yengo<sup>3</sup>, Gerhard Moser<sup>2,4</sup>, Kathryn E. Kemper<sup>1</sup>, Huanwei Wang<sup>1</sup>, Zhili Zheng<sup>1</sup>, Reedik Magi<sup>2</sup>, Tõnu Esko<sup>2</sup>, Andres Metspalu<sup>2,5</sup>, Naomi R. Wray<sup>1,6</sup>, Michael E. Goddard<sup>7</sup>, Jian Yang<sup>1,8\*</sup> & Peter M. Visscher<sup>1</sup>

Received: 1 October 2022 Accepted: 5 March 2024 Published online: 30 April 2024

Zhilizheng<sup>1,2,3,4</sup>, Shueye Liu<sup>1</sup>, Julia Sidorenko<sup>1,2</sup>, Ying Wang<sup>1</sup>, Tian Lin<sup>1</sup>, Loïc Yengo<sup>1,2</sup>, Patrick Turley<sup>1,2</sup>, Alireza Ani<sup>1,2</sup>, Ruiz Wang<sup>1,2</sup>, Iija M. Notti<sup>1,2</sup>, Harold Snieder<sup>1,2</sup>, LifeLines Cohort Study<sup>1</sup>, Jian Yang<sup>1,8\*</sup>, Naomi R. Wray<sup>1,6</sup>, Michael E. Goddard<sup>1,7</sup>, Peter M. Visscher<sup>1,2,3</sup> & Jian Zeng<sup>1,9</sup>

Check for updates

**nature**  
genetics

Article  
<https://doi.org/10.1038/s41588-024-01704-y>

Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries

Received: 1 October 2022 Accepted: 5 March 2024 Published online: 30 April 2024

Zhilizheng<sup>1,2,3,4</sup>, Shueye Liu<sup>1</sup>, Julia Sidorenko<sup>1,2</sup>, Ying Wang<sup>1</sup>, Tian Lin<sup>1</sup>, Loïc Yengo<sup>1,2</sup>, Patrick Turley<sup>1,2</sup>, Alireza Ani<sup>1,2</sup>, Ruiz Wang<sup>1,2</sup>, Iija M. Notti<sup>1,2</sup>, Harold Snieder<sup>1,2</sup>, LifeLines Cohort Study<sup>1</sup>, Jian Yang<sup>1,8\*</sup>, Naomi R. Wray<sup>1,6</sup>, Michael E. Goddard<sup>1,7</sup>, Peter M. Visscher<sup>1,2,3</sup> & Jian Zeng<sup>1,9</sup>

# Low-rank model (fits 7M SNPs or more)

In each quasi-independent LD block:

$$\mathbf{b} = \mathbf{R} \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

GWAS SNP marginal effects    LD correlation matrix    SNP joint effects    Residuals

$$\left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right| = \left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right| + \text{Var}(\boldsymbol{\epsilon}) \propto \left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right|$$

Eigen-decomposition

$$\left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right| = \left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right| + \text{Var}(\boldsymbol{\epsilon}) \propto \left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right|$$

$$\left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right| = \left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right| + \text{Var}(\boldsymbol{\epsilon}) \propto \left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right|$$

$$\mathbf{U} \quad \boldsymbol{\Lambda} \quad \mathbf{U}'$$

$$\boldsymbol{\Lambda}^{-\frac{1}{2}} \mathbf{U}' \mathbf{b} = \boldsymbol{\Lambda}^{\frac{1}{2}} \mathbf{U}' \boldsymbol{\beta} + \boldsymbol{\Lambda}^{-\frac{1}{2}} \mathbf{U}' \boldsymbol{\epsilon}$$

$$\mathbf{w} = \mathbf{Q} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right| = \left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right| + \text{Var}(\boldsymbol{\varepsilon}) \propto \left| \begin{array}{c} \text{GWAS SNP marginal effects} \\ \text{LD correlation matrix} \\ \text{SNP joint effects} \\ \text{Residuals} \end{array} \right|$$

*It only requires the top 20% PCs to explain 99.5% of the variance in LD!*

# Practical Exercise Part 2: SBayesR

<https://gctbhub.cloud.edu.au/data/teaching/>

# Incorporating functional genomic annotations

# Functional genomic annotations

Functional genomic annotations provide orthogonal information useful for polygenic prediction.

- Chromatin states
- Biological functions
- Molecular quantitative trait loci (xQTL)
- .....

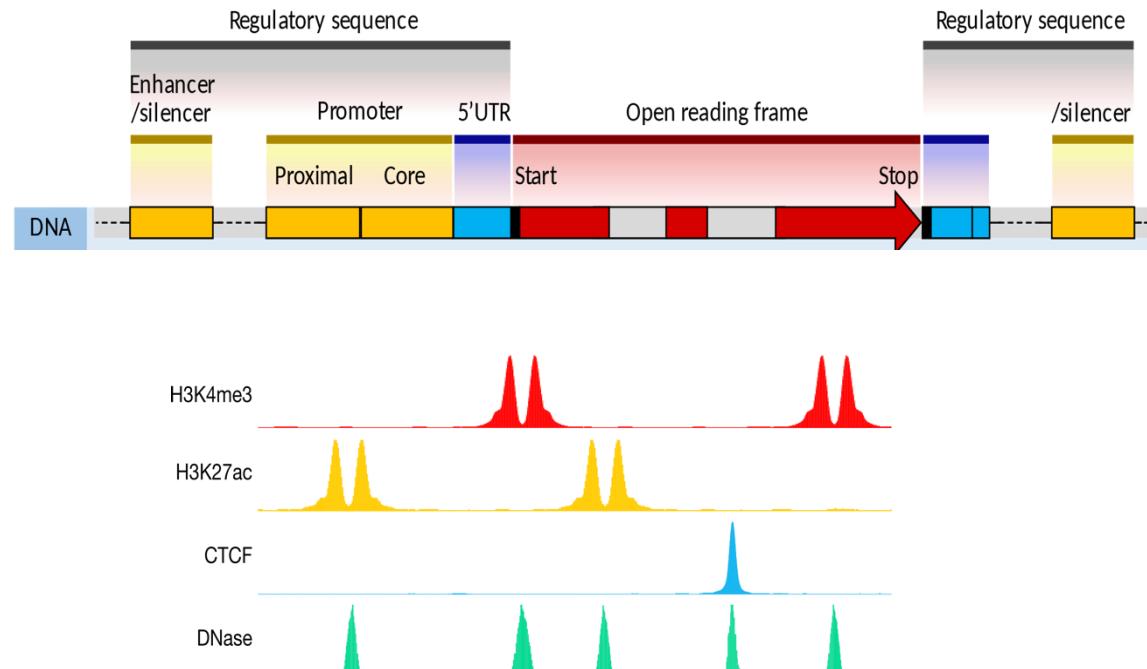


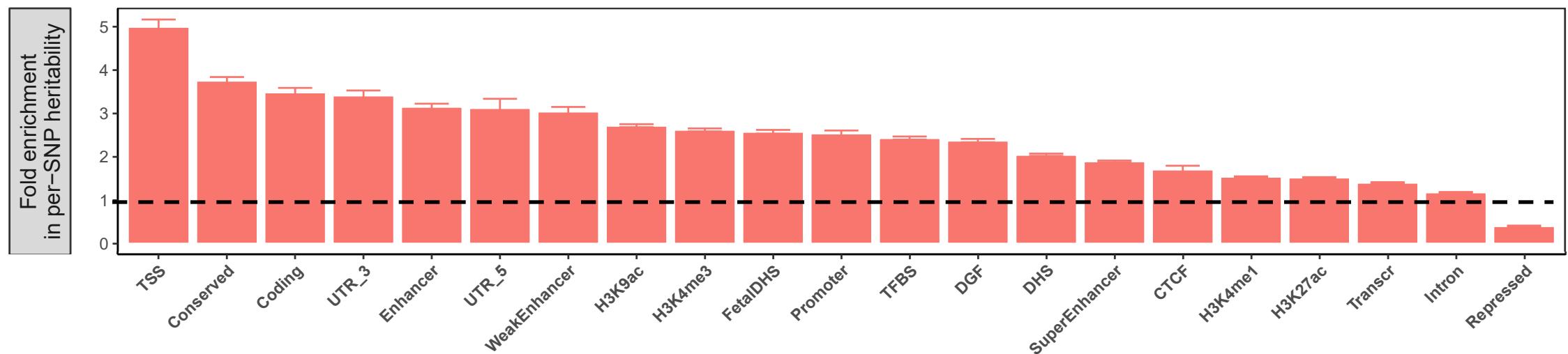
Image from ENCODE  
CRICOS code 00025B

# Functional genomic annotations

Functional genomic annotations provide orthogonal information useful for polygenic prediction.

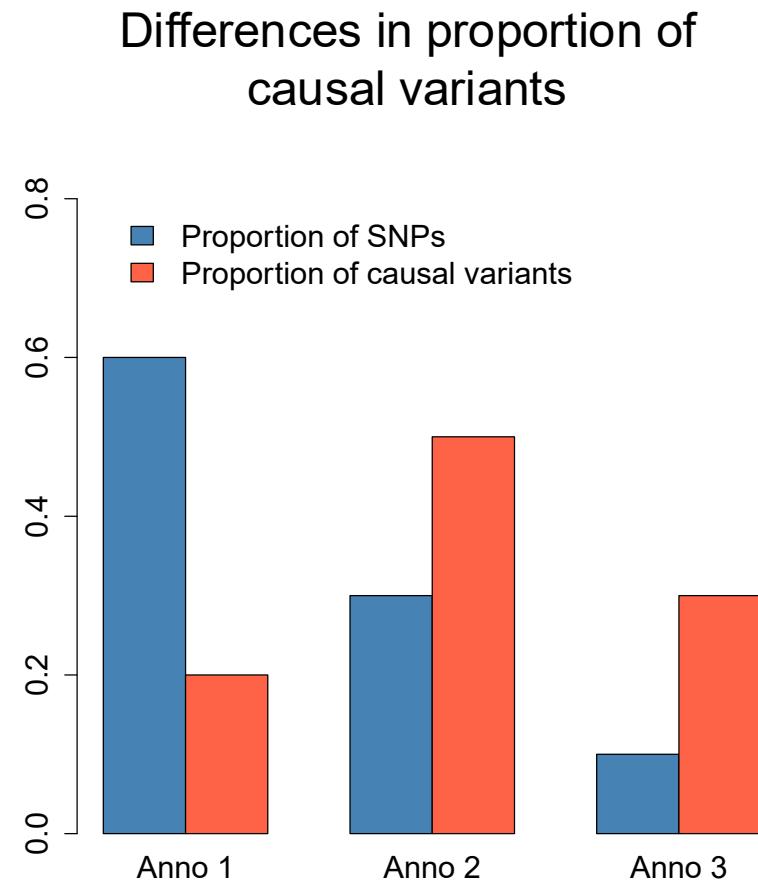
- Chromatin states
- Biological functions
- Molecular quantitative trait loci (xQTL)
- .....

Zeng et al 2021 Nature Communications

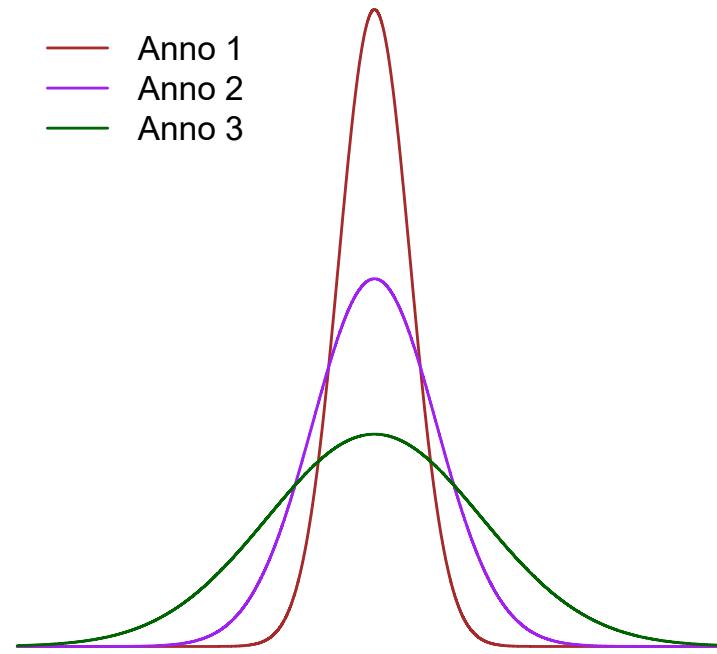


# Opportunities/challenges

Functional annotations are informative on both the presence of causal variants and the distribution of causal effect sizes.



Differences in distribution of causal effects



## nature communications

Explore content ▾ About the journal ▾ Publish with us ▾

nature > nature communications > articles > article

Article | Open Access | Published: 18 October 2021

### Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets

Carla Márquez-Luna , Steven Gazal, Po-Ru Loh, Samuel S. Kim, Nicholas Furlotte, Adam Auton, 23andMe Research Team & Alkes L. Price 

LDpred-funct

### Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits

I. M. MacLeod , P. J. Bowman, C. J. Vander Jagt, M. Haile-Mariam, K. E. Kemper, A. J. Chamberlain, C. Schrooten, B. J. Hayes & M. E. Goddard

BMC Genomics 17, Article number: 144 (2016) | [Cite this article](#)

6209 Accesses | 146 Citations | 9 Altmetric | [Metrics](#)

BayesRC

## PLOS COMPUTATIONAL BIOLOGY

 OPEN ACCESS  PEER-REVIEWED

RESEARCH ARTICLE

### Leveraging functional annotations in genetic risk prediction for human complex diseases

Yiming Hu , Qiongshi Lu , Ryan Powles, Xinwei Yao, Can Yang, Fang Fang, Xinran Xu, Hongyu Zhao 

AnnoPred

### Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data

Jianxin Shi , Ju-Hyun Park, Jubao Duan, Sonja T. Berndt, Winton Moy, Kai Yu, Lei Song, William Wheeler, Xing Hua, Debra Silverman, Montserrat Garcia-Closas, Chao Agnes Hsiung, Jonine D. Figueiroa, [...] Nilanjan Chatterjee  [ view all ]

P+T-funct-LASSO

## nature genetics

Explore content ▾ About the journal ▾ Publish with us ▾

nature > nature genetics > articles > article

Article | Published: 07 April 2022

### Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores

Omer Weissbrod , Masahiro Kanai, Huwenbo Shi, Steven Gazal, Wouter J. Peyrot, Amit V. Khera, Yukinori Okada, The Biobank Japan Project, Alicia R. Martin, Hilary K. Finucane & Alkes L. Price 

Nature Genetics 54, 450–458 (2022) | [Cite this article](#)

Need new method that can

- simultaneously fit all SNPs and annotation data in a unified model
- account for variations in both causal variant proportion and causal effect distribution

Leveraging functional annotations for cross-ancestry prediction

---

nature genetics



Article

<https://doi.org/10.1038/s41588-024-01704-y>

**Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries**

---

Received: 1 October 2022

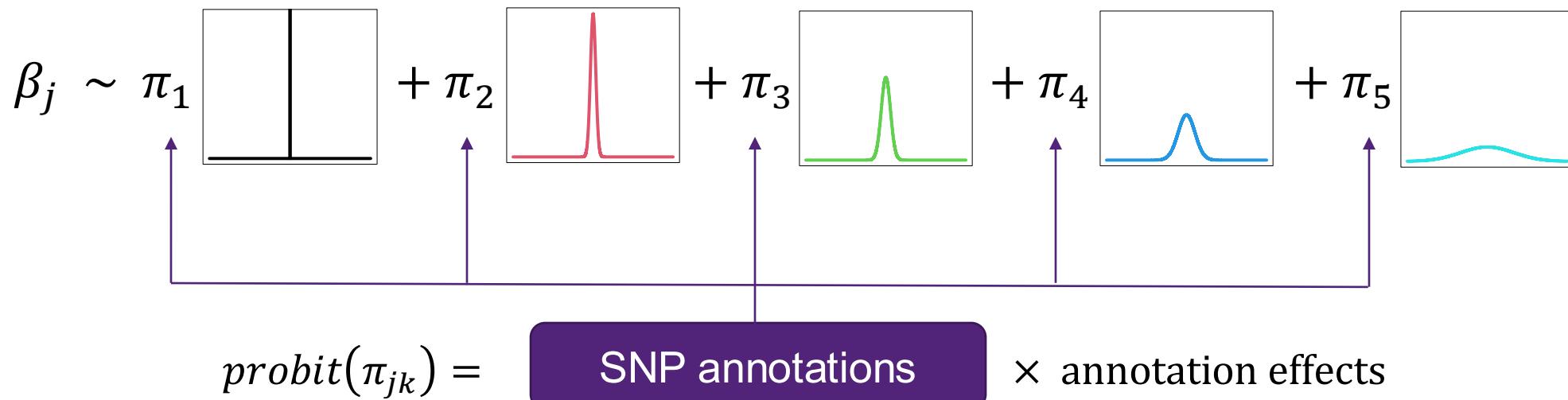
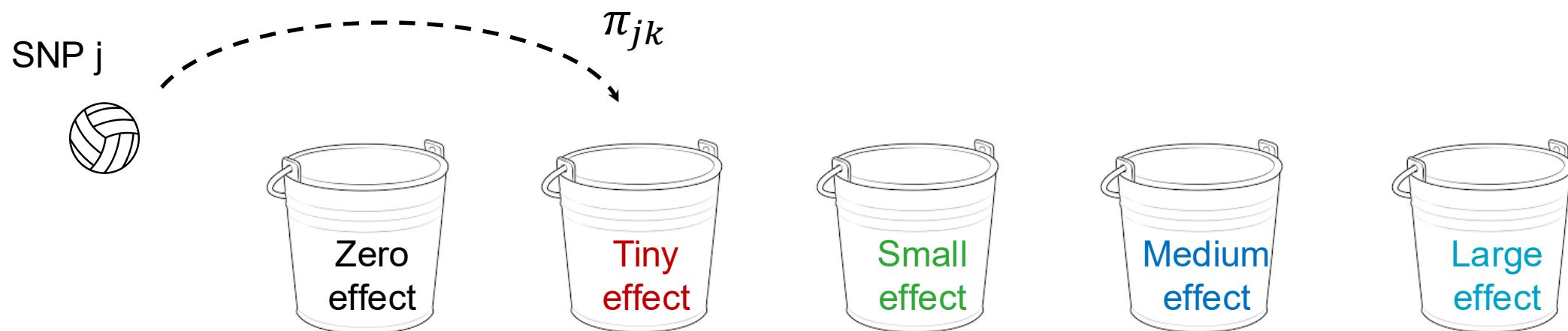
Accepted: 5 March 2024

Published online: 30 April 2024

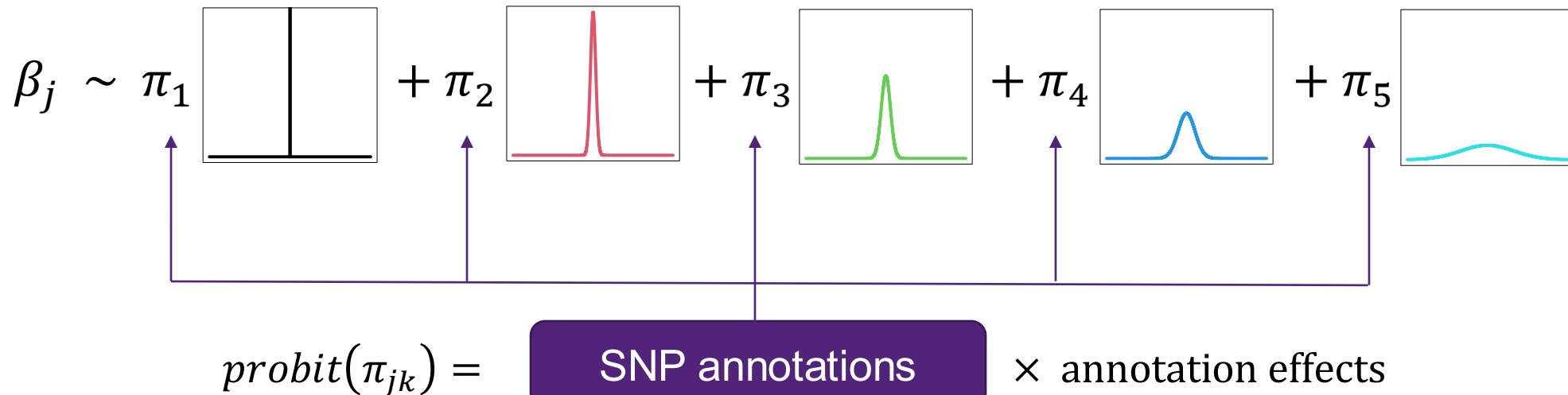
Check for updates

Zhili Zheng <sup>1,2,3</sup>, Shouye Liu <sup>1</sup>, Julia Sidorenko <sup>1</sup>, Ying Wang <sup>1</sup>, Tian Lin <sup>1</sup>, Loic Yengo <sup>1</sup>, Patrick Turley <sup>4,5</sup>, Alireza Ani <sup>6,7</sup>, Ruija Wang <sup>6</sup>, Ilja M. Nolte <sup>6</sup>, Harold Snieder <sup>6</sup>, LifeLines Cohort Study\*<sup>8</sup>, Jian Yang <sup>8,9</sup>, Naomi R. Wray <sup>1,10</sup>, Michael E. Goddard <sup>11,12</sup>, Peter M. Visscher <sup>1,13</sup> & Jian Zeng <sup>1</sup>

## Incorporate functional annotations through a hierarchical prior:



Incorporate functional annotations through a hierarchical prior:



### Assumption

- Annotation effects are additive at the GLM scale.

### Pros

- Estimation of conditional effects.
- Allow annotation overlap.
- Interpretation.

### Cons

- # annotation effect parameters  $\times$  5.
- $\pi_{j1} + \pi_{j2} + \pi_{j3} + \pi_{j4} + \pi_{j5} = 1$ .

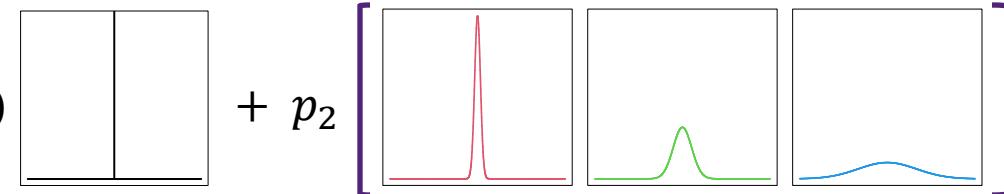
# Reparameterisation of annotation effects

Suppose 4 components for simplicity

- A set of 2-component independent models:

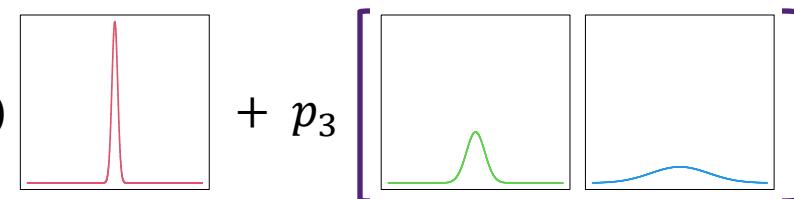
- For all SNPs

$$\beta_j \sim (1 - p_2)$$



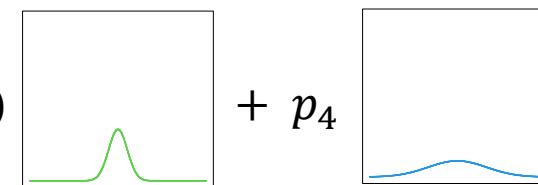
- For SNPs with nonzero effects (conditional on non-null SNPs)

$$\beta_j \sim (1 - p_3)$$



- For SNPs with at least medium effects (conditional on non-small-effect SNPs)

$$\beta_j \sim (1 - p_4)$$



*$p_2, p_3, p_4$  are independent!*

# Reparameterisation of annotation effects

- Probit link function:

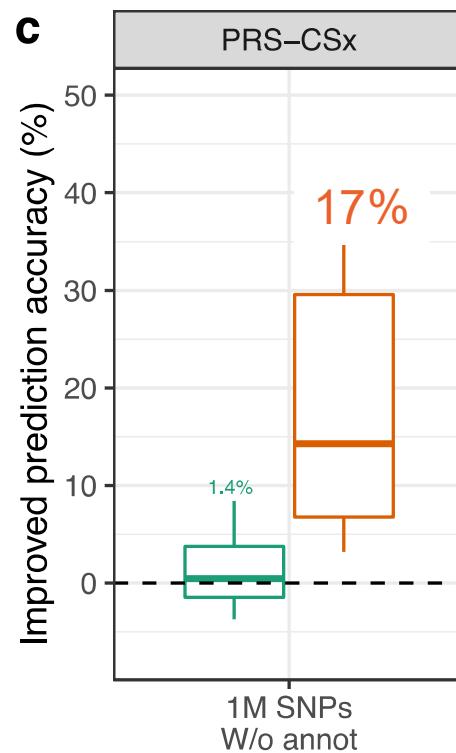
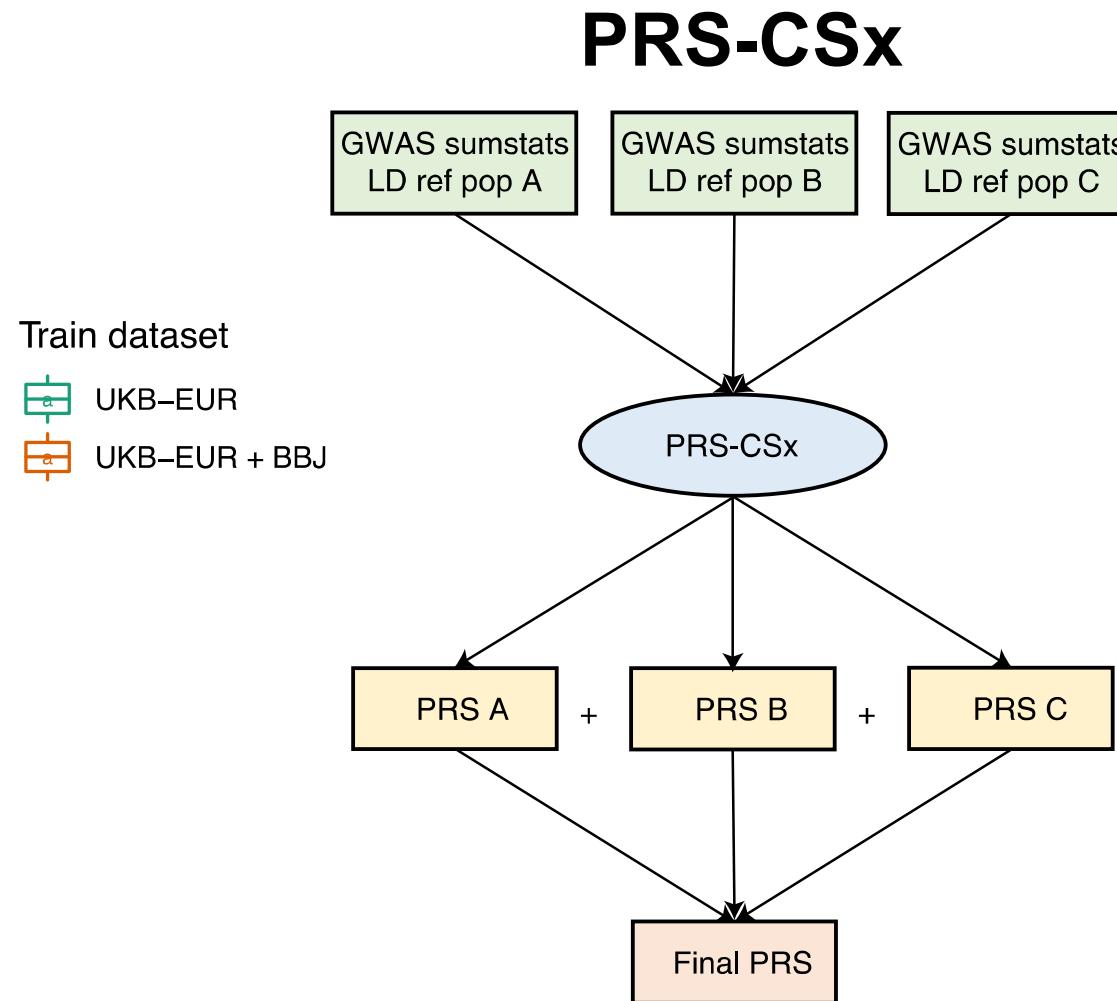
$$\Phi^{-1}(p) = \sum \text{SNP annotation} \times \text{annotation effect}$$

where  $\Phi$  is the CDF of the standard normal distribution.

- It is straightforward to compute  $p = \Phi(\cdot)$   
and  $\pi_1 = 1 - p_2$ ;  $\pi_2 = (1 - p_3)p_2$ ;  $\pi_3 = (1 - p_4)p_3p_2$ ;  $\pi_4 = p_2p_3p_4$
- Assume a normal prior distribution for each annotation effect.
- Gibbs sampling for all parameters.

# Trans-ancestry prediction

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS



**nature genetics**

Explore content ▾ About the journal ▾ Publish with us ▾ Subscribe

nature > nature genetics > articles > article

Article | Published: 05 May 2022

**Improving polygenic prediction in ancestrally diverse populations**

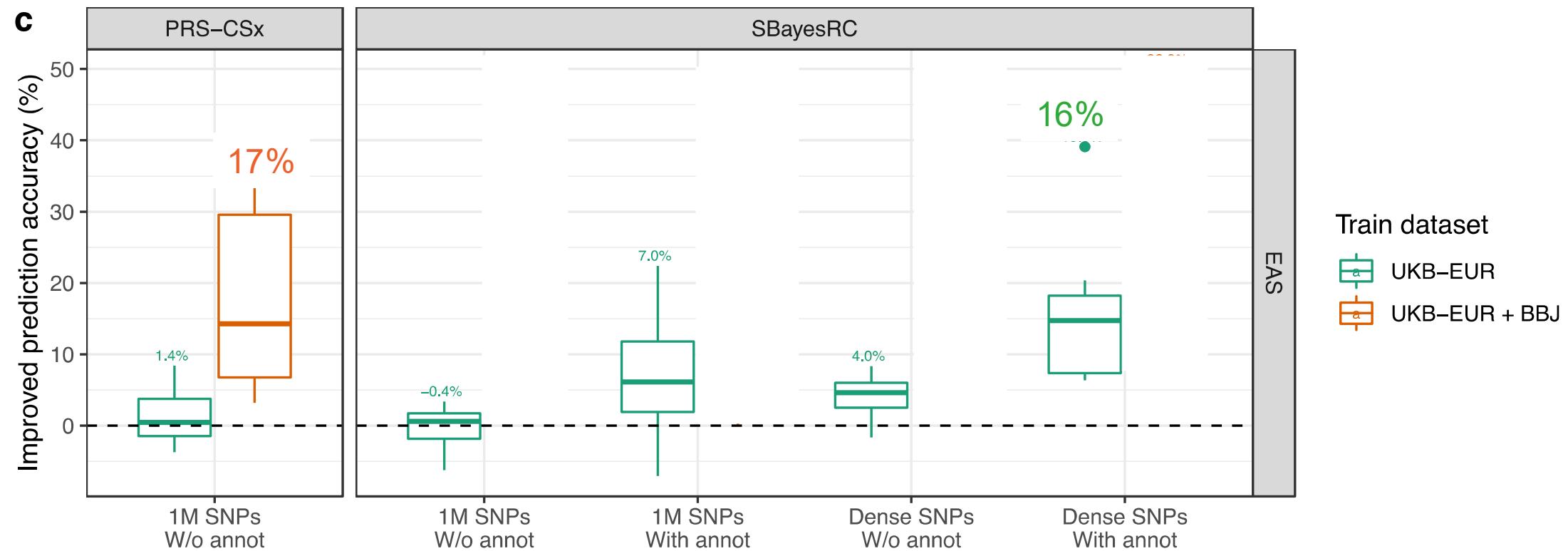
Yunfeng Ruan, Yen-Feng Lin, Yen-Chen Anne Feng, Chia-Yen Chen, Max Lam, Zhenglin Guo, Stanley Global Asia Initiatives, Lin He, Akira Sawa, Alicia R. Martin, Shengying Qin✉, Hailiang Huang✉ & Tian Ge✉

*Nature Genetics* 54, 573–580 (2022) | [Cite this article](#)

How important is functional annotation data compare to another GWAS dataset from the target ancestry?

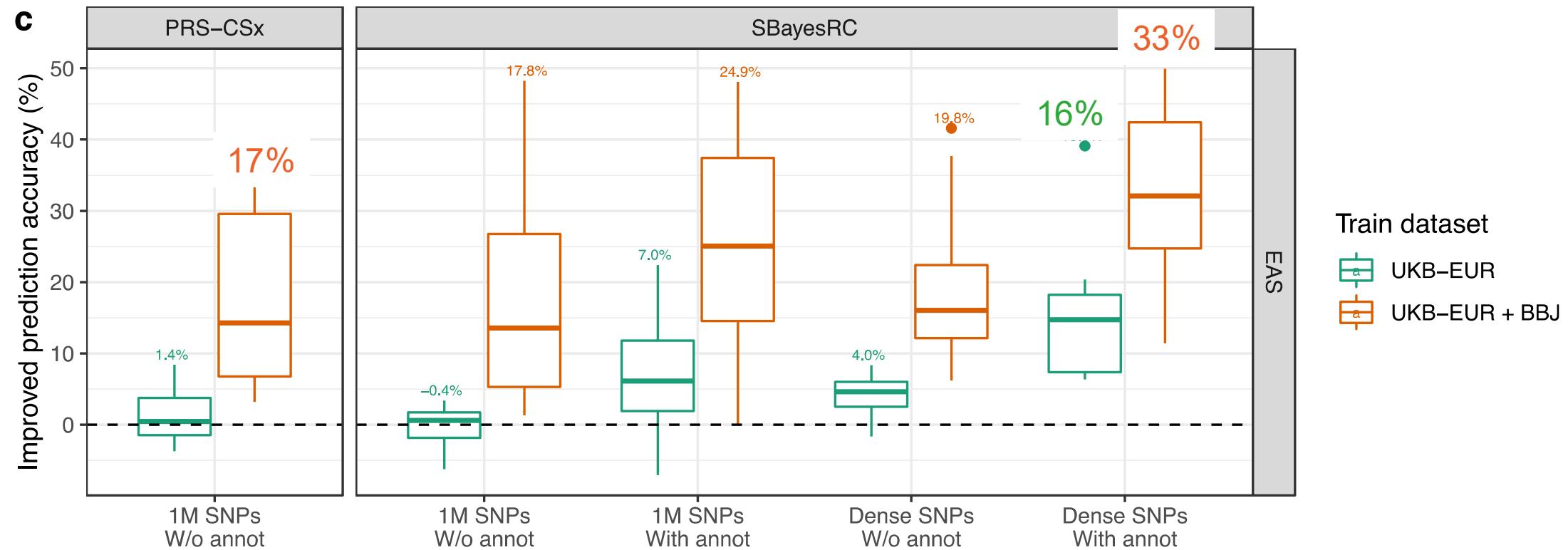
# Trans-ancestry prediction

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS



# Trans-ancestry prediction

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS



# Practical Exercise Part 3: SBayesRC

<https://gctbhub.cloud.edu.au/data/teaching/>

# Summary and challenges

- PGS are imperfect genetic predictors with inherently limited accuracy.
- Being improved with more data and better methods.
- Bayesian approach allows us to incorporate prior knowledge in estimation of SNP effects.
- State-of-the-art Bayesian methods utilize GWAS summary statistics, which unleash the power of large GWAS sample size but may encounter convergence issue.
- Different methods mainly differ in prior assumption and implementation.
- Functional annotations with genome coverage provide orthogonal information to GWAS data and therefore boost prediction accuracy.

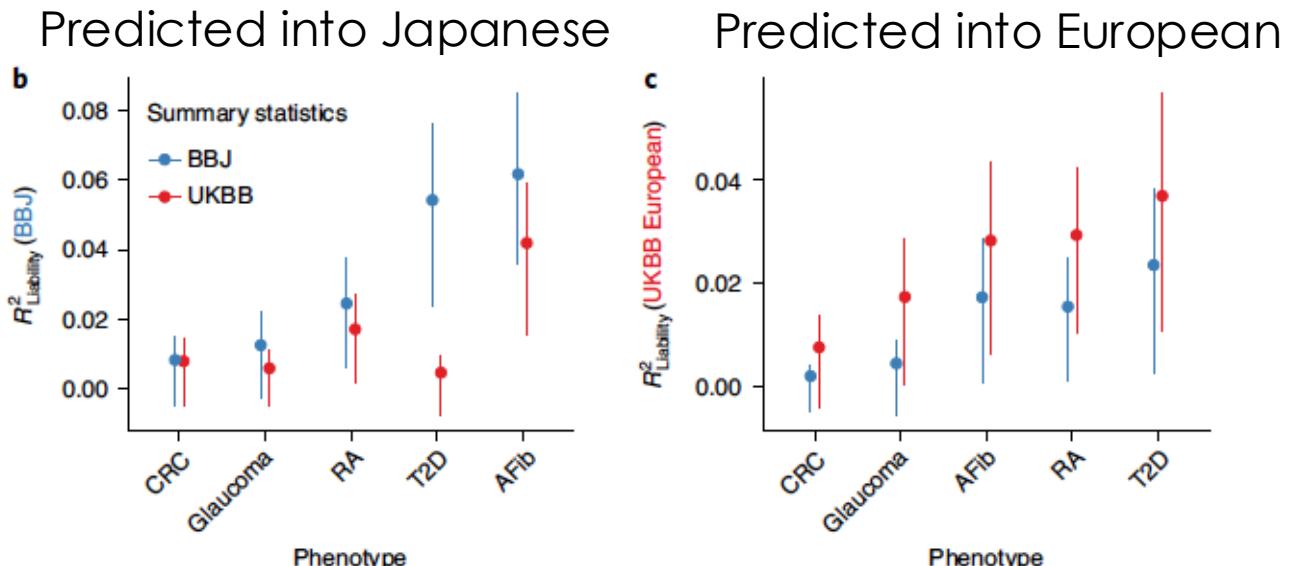
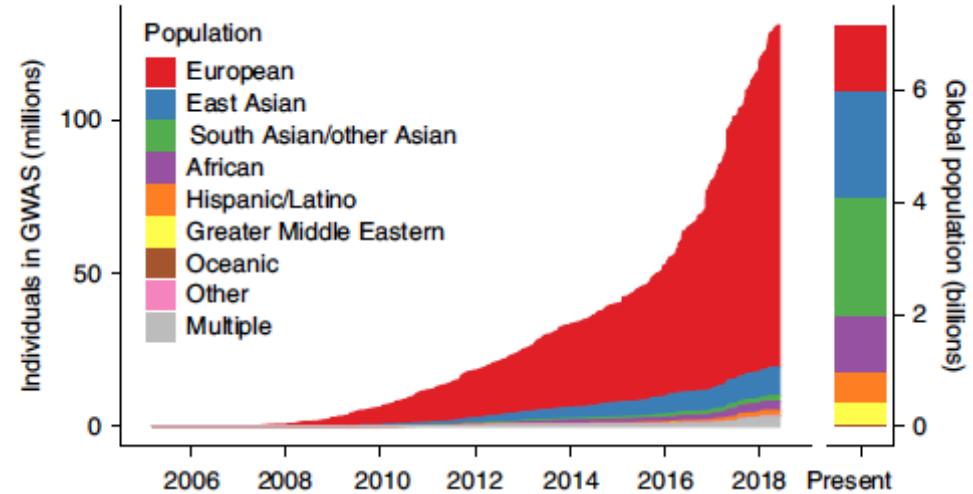
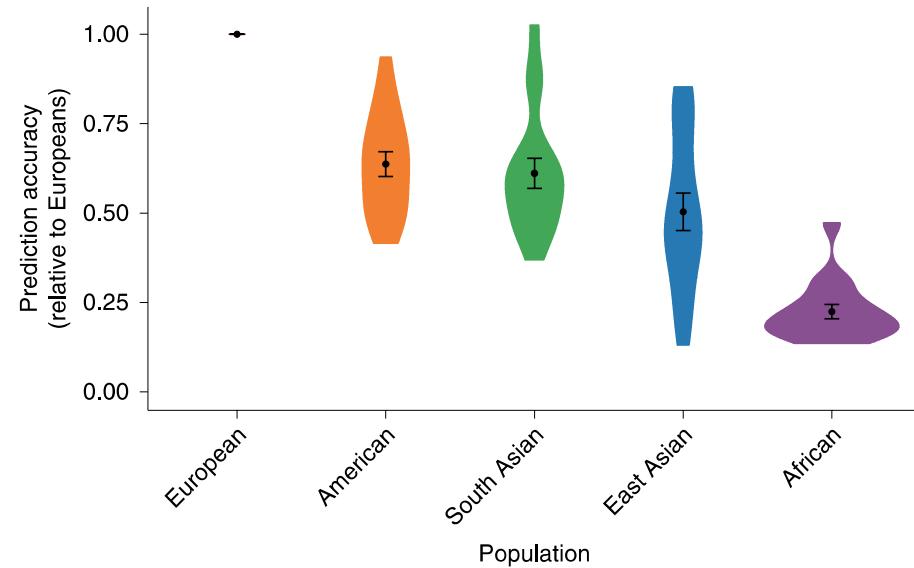
## PERSPECTIVE

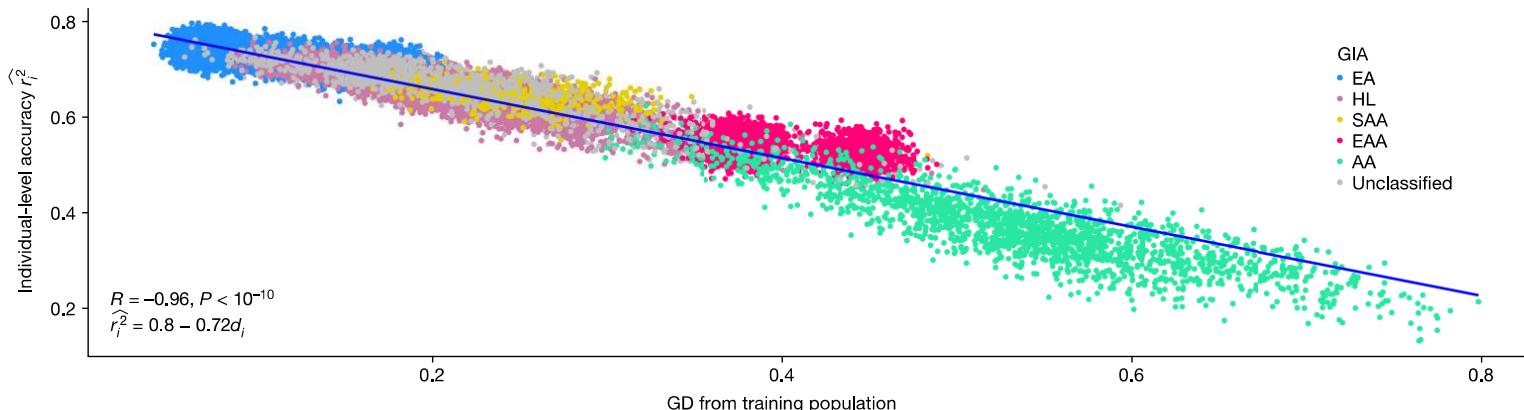
<https://doi.org/10.1038/s41588-019-0379-x>

nature  
genetics

## Clinical use of current polygenic risk scores may exacerbate health disparities

Alicia R. Martin <sup>1,2,3\*</sup>, Masahiro Kanai <sup>1,2,3,4,5</sup>, Yoichiro Kamatani <sup>1,5,6</sup>, Yukinori Okada <sup>1,5,7,8</sup>,  
Benjamin M. Neale <sup>1,2,3</sup> and Mark J. Daly <sup>1,2,3,9</sup>





## Issues

- Same causal variants
  - Different allele frequencies
  - LD differences
  - Different effect sizes
- Different causal variants
  - GxE
  - Different phenotype

In general:  
We expect common causal variants to be shared across ancestries

But correlation structure differs

## nature genetics

Explore content ▾ About the journal ▾ Publish with us ▾

nature > nature genetics > articles > article

Article | Published: 20 March 2023

**Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals**

## nature

Explore content ▾ About the journal ▾ Publish with us ▾

nature > articles > article

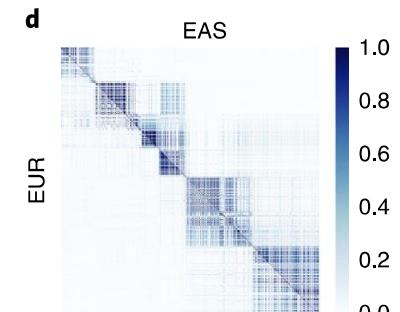
Article | Open Access | Published: 17 May 2023

**Polygenic scoring accuracy varies across the genetic ancestry continuum**

Yi Ding, Kangcheng Hou, Ziqi Xu, Aditya Pimplaskar, Ella Petter, Kristin Boulier, Florian Privé, Bjarni J. Vilhjálmsson, Loes M. Olde Loohuis & Bogdan Pasaniuc

*Nature* (2023) | Cite this article

11k Accesses | 200 Altmetric | Metrics



## nature genetics

Explore content ▾ About the journal ▾ Publish with us ▾

nature > nature genetics > articles > article

Article | Open access | Published: 03 February 2025

**Fine-scale population structure and widespread conservation of genetic effect sizes between human groups across traits**

# What is the maximum prediction accuracy we can get?

Variance explained by the predictor

$$R^2 = \frac{h_m^2}{1 + C}$$

$h_m^2$  : True variance explained by the predictor depends on the SNP set - subscript m.

C: captures the error in estimation

As  $C \rightarrow 0$ ,  $R^2 \rightarrow h_m^2$

We want C to be as small as possible:

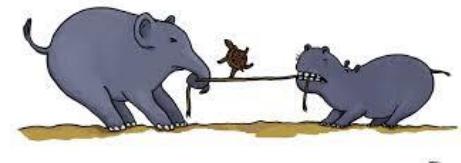
- C decreases as Discovery sample N increases
- C decreases as the number of SNPs in the SNP set m decreases

$$C \approx \frac{m}{Nh_m^2}$$



As m gets smaller,  $h_m^2$  also gets smaller

How to optimise m and  $h_m^2$  to get max  $R^2$  ?



# How about whole genome sequencing?

Maximum depends on  
maximising  $h_m^2$

We use GWAS data so the  
maximum  $h_m^2$  is the SNP-based  
heritability

Theoretical maximum depends  
on the heritability of the trait

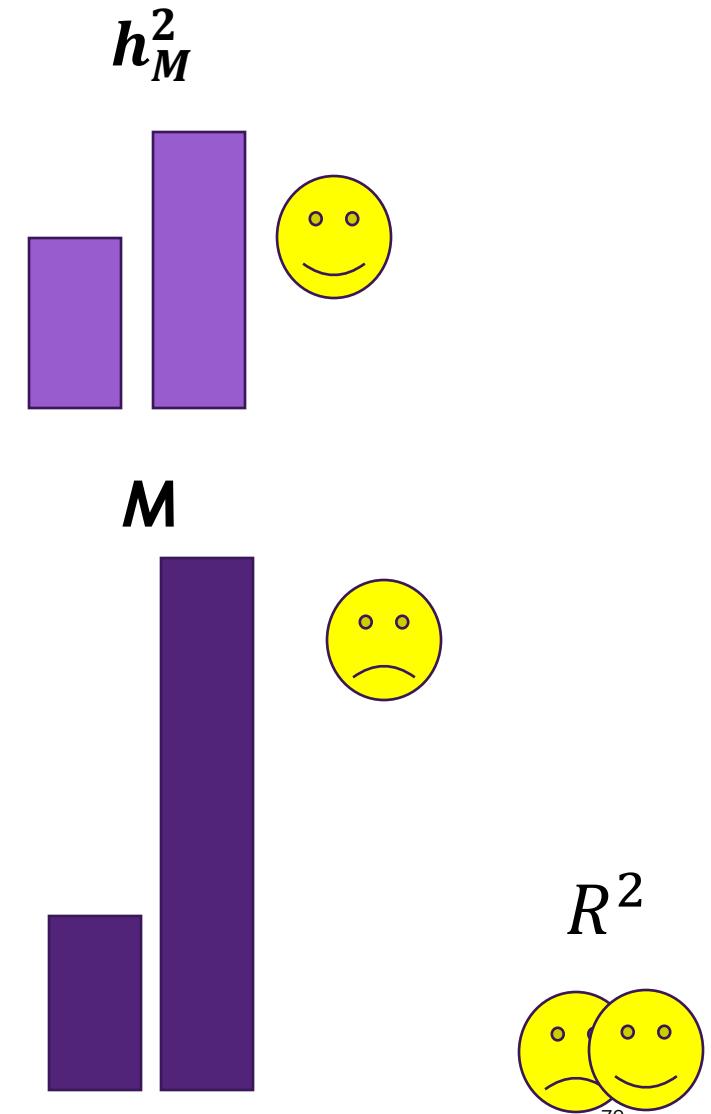
With whole genome sequencing the variance captured by  
all measured SNPs will increase

But the number of SNPs that we have estimate effect sizes  
for increases much more

Need MASSIVE discovery sample sizes for WGS associations

Also... rare variants are less likely to be shared across populations

$$R^2 \approx \frac{h_m^2}{1 + \frac{m}{Nh_m^2}}$$



# Reference

## BayesA, BayesB:

Copyright © 2001 by the Genetics Society of America

**Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps**

T. H. E. Meuwissen,\* B. J. Hayes† and M. E. Goddard†,‡

\*Research Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands, †Victorian Institute of Animal Science, Attwood 3049, Victoria, Australia and ‡Institute of Land and Food Resources, University of Melbourne, Parkville 3052, Victoria, Australia

Manuscript received August 17, 2000  
Accepted for publication January 17, 2001

## BayesR:

 J. Dairy Sci. 95:4114–4129  
<http://dx.doi.org/10.3168/jds.2011-5019>  
© American Dairy Science Association®, 2012. Open access under [CC BY-NC-ND license](#)

**Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels**

M. Erbe,\*† B. J. Hayes,†‡§ L. K. Matukumalli,‡ S. Goswami,|| P. J. Bowman,†‡ C. M. Reich,†‡ B. A. Mason,†‡ and M. E. Goddard†||

## SBayesR:

 ARTICLE  
<https://doi.org/10.1038/s41467-019-12653-0> OPEN

Improved polygenic prediction by Bayesian multiple regression on summary statistics

Luke R. Lloyd-Jones<sup>1,9</sup>, Jian Zeng<sup>1,9</sup>, Julia Sidorenko<sup>1,2</sup>, Loïc Yengo<sup>1</sup>, Gerhard Moser<sup>3,4</sup>, Kathryn E. Kempel<sup>1</sup>, Huanwei Wang<sup>1</sup>, Zhili Zheng<sup>1</sup>, Reedit Magi<sup>2</sup>, Tánu Esko<sup>2</sup>, Andres Metspalu<sup>2,5</sup>, Naomi R. Wray<sup>1,6</sup>, Michael E. Goddard<sup>1</sup>, Jian Yang<sup>1,8</sup> & Peter M. Visscher<sup>1,7</sup>

## LDpred2:

 Bioinformatics, 2021, 1–8  
doi:10.1093/bioinformatics/btaa1029  
Advance Access Publication Date: 16 December 2020  
Original Paper

Genetics and population analysis  
**LDpred2: better, faster, stronger**

Florian Privé<sup>1,\*</sup>, Julian Arbel<sup>2</sup> and Bjarni J. Vilhjálmsson<sup>1,3,\*</sup>

## PRS-CS:

 Explore content ▾ About the journal ▾ Publish with us ▾

nature > nature communications > articles > article

Article | Open access | Published: 16 April 2019

**Polygenic prediction via Bayesian regression and continuous shrinkage priors**

Tian Ge<sup>1</sup>, Chia-Yen Chen<sup>1</sup>, Yeng Ni<sup>1</sup>, Yen-Chen Anne Feng<sup>1</sup> & Jordan W. Smoller<sup>1</sup>

Nature Communications 10, Article number: 1776 (2019) | [Cite this article](#)

70k Accesses | 1580 Citations | 53 Altmetric | [Metrics](#)

## BayesC:

Habier et al. *BMC Bioinformatics* 2011, **12**:186  
<http://www.biomedcentral.com/1471-2105/12/186>

 **RESEARCH ARTICLE** **Open Access**

**Extension of the bayesian alphabet for genomic selection**

David Habier<sup>1,\*</sup>, Rohan L Fernando<sup>1</sup>, Kadir Kizilkaya<sup>1,2</sup> and Dorian J Garrick<sup>2,3</sup>

## SBayesRC:

 Article  
<https://doi.org/10.1038/s41588-024-01704-y>

**Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries**

Zhili Zheng<sup>1,2,3</sup>, Shouye Liu<sup>1</sup>, Julia Sidorenko<sup>1</sup>, Ying Wang<sup>1</sup>, Tian Lin<sup>1</sup>, Loïc Yengo<sup>1</sup>, Patrick Turley<sup>4,5</sup>, Alireza Ani<sup>6,7</sup>, Ruila Wang<sup>1</sup>, Ilya M. Notte<sup>8</sup>, Harold Snieder<sup>9</sup>, LifeLines Cohort Study<sup>10</sup>, Jian Yang<sup>1,8</sup>, Naomi R. Wray<sup>1,6</sup>, Michael E. Goddard<sup>1,10</sup>, Peter M. Visscher<sup>1,11</sup> & Jian Zeng<sup>1</sup>

Received: 1 October 2022  
Accepted: 5 March 2024  
Published online: 30 April 2024  
[Check for updates](#)

## MegaPRS:

 ARTICLE  
<https://doi.org/10.1038/s41467-021-24485-y> OPEN

[Check for updates](#)

Improved genetic prediction of complex traits from individual-level data or summary statistics

Qianqian Zhang<sup>1</sup>, Florian Privé<sup>2</sup>, Bjarni Vilhjálmsson<sup>1,2</sup> & Doug Speed<sup>1,3,4,5,6,7,8,9,10,11,12</sup> 79