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Outline

• Understanding to polygenic scores (PGS)

• Basic method to construct PGS

• Bayesian methods [15min Lecture | 15min Practical | 5min break ]

• Using GWAS summary statistics [15min Lecture | 15min Practical | 5min break ]

• Incorporating functional genomic annotations [15min Lecture | 15min Practical]

• Wrap-up/discussion/questions

Practical exercises will use a toy example and R scripts

All materials are available at: 

https://gctbhub.cloud.edu.au/data/teaching/ 
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https://gctbhub.cloud.edu.au/data/teaching/


Polygenic scores (PGS)

Polygenic scores (PGS) predict individual genetic values of complex traits using genome variations.

Polygenic risk scores (PRS) are predictors of the genetic susceptibilities of individuals to diseases.

Head in the clouds                   Head in the sand

Source: Strachan & Read Human Molecular Genetics 3.
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Theory and methodology 

of polygenic scores (PGS) 

are built on 

our understanding of 

“polygenicity” 

in complex traits.

Height

Schizophrenia

Obesity
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Common diseases are polygenic

248 risk loci identified at genome-wide significance level.

We predict thousands are associated with schizophrenia.

schizophrenia
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Many polygenic genetic architectures
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Type 1 Diabetes Rheumatoid Arthritis Crohn’s Diseasse

Coronary Artery 

Disease
Type 2 Diabetes

Bipolar Disorder Schizophrenia

Hypertension

small
middle
big

Many DNA variants contribute to 
genetic risk, and most have very 

small effects.
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Polygenic disease for an individual

900 DNA polymorphic sites

RV =risk variant

Frequency of risk variant at each site: 0.1 (p)

Average person 900*2*0.1 = 180 risk variant

Mean +/- 3SD:   142 to 218

Toy 
example

0 Grey: Homozygote no risk alleles (or equivalently 2 protective alleles)

1 Blue : Heterozygote one risk allele (and one non-risk/protective allele)

2 Red:  Homozygote two risk alleles

Count of RV in population
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Polygenic disease for an individual

• We all carry 

risk variants for 

all diseases.

• Robustness

• Those affected 

carry a higher 

burden.

• Non-genetic 

factors 

contribute to 

risk too

• Each person 

carries a 

unique 

portfolio of risk 

alleles
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Polygenic score

“True” polygenic score

Genetic variance between people attributed to all genetic factors V(A) ℎ2 =
𝑉(𝐴)

𝑉(𝑃) 
heritability
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Polygenic score

“True” polygenic score

Genetic variance between people attributed to all genetic factors V(A) ℎ2 =
𝑉(𝐴)

𝑉(𝑃) 
heritability

Not all variants captured 

on genotyping arrays 

Genetic variance between people attributed to all genetic factors 

associated with SNPs on genotyping arrays

ℎ𝑆𝑁𝑃
2 = ℎ𝑔

2 =
𝑉(𝐴: 𝑆𝑁𝑃)

𝑉(𝑃) 
SNP − based heritability
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❖ PGS have a theoretical upper limit dependent on the heritability of 

the trait (how much of the variance of trait values between people is 

attributed to genetic factors).

❖ PGS have a technical upper limit associated with the proportion of 

variance tagged by the DNA variants measured. 

❖ PGS have a practical upper limit dependent on the sample size of 
the discovery sample used to estimate effect sizes of risk alleles, and 

the quality of the discovery sample.

❖ PGS can be pushed closer to the technical upper limit  by the 
statistical methodology used to generate the optimal weighting 

given to the risk alleles, and new methods integrate new biological 
data.

ℎ2

ℎ𝑆𝑁𝑃
2

𝑅2

Current:
11% Liability

AUC 0.74

Max:
25% Liability

AUC 0.84

Polygenic scores cannot 

be highly accurate 

predictors of phenotypes

Schizophrenia

Limitations in prediction accuracy
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Basic method for PGS



Polygenic scores (PGS)

4. Evaluate

Y=  b*PGS + e

R2 = var(b*PGS)/Var(Y)

PGS = ෢𝛽1𝑥𝑖1 + ෢𝛽2𝑥𝑖2 + ෢𝛽3𝑥𝑖3 + ⋯  = σ
𝑗=1
𝑛𝑆𝑁𝑃 ෡𝛽𝑗𝑥𝑖𝑗

• A weighted count of risk alleles

0, 1 or 2

Risk alleles
Which SNPs?

What weights?

• Don’t need to know causal variants for prediction!

• Prediction can be based on correlated variants.

AUC statistic:

Probability that a case ranks 

higher than a control 13



PGS methods

PGS = ෢𝛽1𝑥𝑖1 + ෢𝛽2𝑥𝑖2 + ෢𝛽3𝑥𝑖3 + ⋯  = σ
𝑗=1
𝑛𝑆𝑁𝑃 ෡𝛽𝑗𝑥𝑖𝑗

A weighted sum of the count of risk alleles

How many SNPs?

Which SNPs?
What weights? 

Basic method:

Clumping & P-value thresholding 
(C+PT):

14



PGS methods

PGS = ෢𝛽1𝑥𝑖1 + ෢𝛽2𝑥𝑖2 + ෢𝛽3𝑥𝑖3 + ⋯  = σ
𝑗=1
𝑛𝑆𝑁𝑃 ෡𝛽𝑗𝑥𝑖𝑗

A weighted sum of the count of risk alleles

How many SNPs?

Which SNPs?
What weights? 

Basic method:

Clumping & P-value thresholding 
(C+PT):

• Select most associated SNP in 
tower – LD-based clumping

• Select on a p-value threshold

Index 1Index 2
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PGS methods

PGS = ෢𝛽1𝑥𝑖1 + ෢𝛽2𝑥𝑖2 + ෢𝛽3𝑥𝑖3 + ⋯  = σ
𝑗=1
𝑛𝑆𝑁𝑃 ෡𝛽𝑗𝑥𝑖𝑗

A weighted sum of the count of risk alleles

How many SNPs?

Which SNPs?
What weights? 

Basic method:

Clumping & P-value thresholding 
(C+PT):

• Select most associated SNP in 
tower – LD-based clumping

• Select on a p-value threshold

16



PGS methods

PGS = ෢𝛽1𝑥𝑖1 + ෢𝛽2𝑥𝑖2 + ෢𝛽3𝑥𝑖3 + ⋯  = σ
𝑗=1
𝑛𝑆𝑁𝑃 ෡𝛽𝑗𝑥𝑖𝑗

A weighted sum of the count of risk alleles

How many SNPs?

Which SNPs?
What weights? 

New methods model 

genetic architecture

17

LDpred-Inf

SBLUP

LDPred2

SBayesC

SBayesRBSLMM
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PGS methods

• Random effects models > fixed effects 
models

• Mixture models > non-mixture 
(infinitesimal) models

18
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Bayesian methods for PGS
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Bayesian methods 

• Bayesian methods can estimate all parameters including SNP effects 

simultaneously

• Allow alternative assumptions regarding the distribution of SNP 
effects

• Different Bayesian methods mainly differ in 

• Assumption of the SNP effect distribution

• Implementation
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Assumptions for SNP effect distribution

MethodDistribution of SNP effectsAssumption

BLUP/LDpred2-infNormal distributionInfinite number of small effects

BayesA/PRS-CS
Student’s t distribution,

hierarchical distributioneffects, many small effects
Small number of moderate to large 

LDpred2/BayesC
Mixture, spike at zero, 

normal distribution

Small number of small effects, many 

zero effects

BayesRMixture, multiple normals
Many zero effects, proportion of small 

effects, some moderate to large effects
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BayesC

How to incorporate this prior knowledge in the estimation of SNP effects?

Assumptions for SNP effect distribution

BayesR
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Bayes theorem

Introduction to Bayesian methods

)()|()|( xPxyPyxP 

Probability of 

parameters x given 

the data y (posterior)

Is proportional to Probability of 

data y given the 

x (likelihood of 

data)

Prior 

probability 

of x
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Introduction to Bayesian methods

Consider an experiment where we measure height of 10 people 

to estimate average height

We want to use prior knowledge from many previous studies that 

average height is 174cm with standard error 5cm

y = average height + e
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Bayes theorem

Introduction to Bayesian methods

)()|()|( xPxyPyxP 

Prior probability of x (average height)
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Bayes theorem

Introduction to Bayesian methods

)()|()|( xPxyPyxP 

Prior probability of x (average height)

0

0.01

0.02
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0.07
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Height

D
e
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5.

178

=

=

es

x

From the data……
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Bayes theorem

Introduction to Bayesian methods

)()|()|( xPxyPyxP 

Prior probability of x (average height)
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Likelihood of data (y) given 

height x, most likely x = 178cm
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Bayes theorem

Introduction to Bayesian methods

)()|()|( xPxyPyxP 

L(y|x)                              P(x)                  
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P(x|y) mean = 176cm
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Less certainty about prior information? Use less informative (flat) prior

Introduction to Bayesian methods

)()|()|( xPxyPyxP 

L(y|x)                              P(x)                  
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More certainty about prior information? Use more informative prior

Introduction to Bayesian methods

)()|()|( xPxyPyxP 

L(y|x)                              P(x)                  
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Model

BayesC

𝐲 = 𝟏𝜇 + 𝐗𝜷 + 𝐞

0



0
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Posterior inference on SNP effects

BayesC

𝐲 = 𝟏𝜇 + 𝐗𝜷 + 𝐞
𝑃(𝜷|𝒚) ∝ 𝑃(𝒚|𝜷)𝑃(𝜷)

∝ 𝜎𝑒
2 −

𝑛
2 exp −

𝐲 − 𝐗𝜷 ′ 𝐲 − 𝐗𝜷

2𝜎𝑒
2 ෑ

𝑗=1

𝑚

𝜎𝛽
2 −

1
2 exp −

𝛽𝑗
2

2𝜎𝛽
2 𝜋 + 𝜑0(1 − 𝜋)

෡𝜷 = 𝐸 𝜷 𝒚

SNP effect estimates:

= න
𝛽1

… න
𝛽𝑚

𝜎𝑒
2 −

𝑛
2 exp −

𝐲 − 𝐗𝜷 ′ 𝐲 − 𝐗𝜷

2𝜎𝑒
2 ෑ

𝑗=1

𝑚

𝜎𝛽
2 −

1
2 exp −

𝛽𝑗
2

2𝜎𝛽
2 𝜋 + 𝜑0(1 − 𝜋) d𝛽1 … d𝛽𝑚

= න 𝜷𝑃 𝜷 𝒚 d𝜷
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Posterior inference on SNP effects

BayesC

• Cannot solve directly → no closed form solution

• Estimates of parameters depend on other parameters

• Use Markov chain Monte Carlo (MCMC) algorithm!

෡𝜷 = 𝐸 𝜷 𝒚 = න
𝛽1

… න
𝛽𝑚

𝜎𝑒
2 −

𝑛
2 exp −

𝐲 − 𝐗𝜷 ′ 𝐲 − 𝐗𝜷

2𝜎𝑒
2 ෑ

𝑗=1

𝑚

𝜎𝛽
2 −

1
2 exp −

𝛽𝑗
2

2𝜎𝛽
2 𝜋 + 𝜑0(1 − 𝜋) d𝛽1 … d𝛽𝑚
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Markov chain

MCMC algorithm

A sequence of samples where each sample depends only on the 

previous one (memoryless). This property allows the algorithm to 

gradually explore the distribution.

Monte Carlo

Using random sampling to perform numerical estimation, e.g., 

integrating over a probability distribution by averaging over samples.
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A special case of MCMC to sample from posterior distribution of each 

parameter conditional on all other parameters.

Gibbs Sampling

MCMC algorithm

Figure source
The key is to derive 𝑃 𝑥1|𝑥2  and 𝑃 𝑥2|𝑥1

https://mikelove.wordpress.com/2008/09/08/visual-explanation-of-gibbs-sampling/
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To run Gibbs sampling, we need to derive the full conditional 
distribution for each parameter

BayesC

𝐲 = 𝟏𝜇 + 𝐗𝜷 + 𝐞• 𝑃 𝜇 𝒚, 𝜷, 𝜎𝛽
2, 𝜋, 𝜎𝑒

2

• 𝑃 𝛽𝑗 𝒚, 𝜷−𝑗 , 𝜎𝛽
2, 𝜋, 𝜎𝑒

2

• 𝑃 𝜎𝛽
2 𝒚, 𝜷, 𝜋, 𝜎𝑒

2

• 𝑃 𝜋 𝒚, 𝜷, 𝜎𝛽
2, 𝜎𝑒

2

• 𝑃 𝜎𝑒
2 𝒚, 𝜷, 𝜎𝛽

2, 𝜋
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Gibbs sampling

BayesC

• Set starting values for (𝜇, 𝜹, 𝜷, 𝜎𝛽
2, 𝜋, 𝜎𝑒

2)

• Then (for many iterations)

• For each SNP, sample 𝛿𝑗 , 𝛽𝑗 conditional on other parameters 

• Sample 𝜇, 𝜎𝛽
2, 𝜋, 𝜎𝑒

2 with updated 𝜹, 𝜷

Samples reconstruct posterior distributions of parameters
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For example, for SNP effect 𝛽𝑗

- First sample if in zero or nonzero effect component of distribution 

(𝛿𝑗)

- Then if in nonzero component of the distribution, sample from

Gibbs Sampling

BayesC

𝑁
𝐗𝑗

′(𝐲 − 𝟏𝐧𝜇 − σ𝑘≠𝑗 𝐗𝑘
′ 𝛽𝑘)

𝐗𝑗
′𝐗𝑗 + 𝜎𝑒

2/𝜎𝛽
2 , 𝜎𝑒

2/ 𝐗𝑗
′𝐗𝑗 + 𝜎𝑒

2/𝜎𝛽
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-3 -2 -1 0 1 2 3

Effect

D
e

n
si

ty

Introduce shrinkage
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Gibbs sampling

BayesC

Trace plot Posterior distribution

Posterior mean is used as the point estimate of the SNP effect
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As a method of fine-mapping

BayesC

Posterior inclusion probability (PIP): 

probability that the SNP is included in the model with a nonzero effect.
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Model

BayesR

𝐲 = 𝟏𝜇 + 𝐗𝜷 + 𝐞

BayesC is a special case of BayesR with two components
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Why use multi-normal mixture?

BayesR

Account for almost any distribution!

𝜋1𝛽𝑗  ~ + 𝜋2 + 𝜋3 + 𝜋4



Practical Exercise Part 1: BayesR

https://gctbhub.cloud.edu.au/data/teaching/ 
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https://gctbhub.cloud.edu.au/data/teaching/
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Bayesian methods using GWAS summary statistics 
(sumstats)
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Motivation

• Best prediction methods take genetic values as random effect.

• These methods require individual genotypes and phenotypes.

• These data are often not publicly accessible. 

• Computationally demanding with large # individuals/SNPs.

• Could be addressed by using GWAS summary statistics (sumstats).

• Methodology in human genetics has moved forward to use GWAS 

sumstats only.
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2021

Sumstats
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Given the standard GWAS with genotypes being allelic counts (0/1/2),

the minimum data required for PGS prediction include:

• SNP marginal effect estimates

• Standard errors

• GWAS sample size

• LD correlations among SNPs

What are the minimum data required?

Sumstats for PGS prediction

GWAS sumstats

LD matrix
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SNP marginal effect estimates

GWAS estimates effect of each SNP one at a time from single SNP regression, so the 

estimate is marginal to (unconditional on) other SNPs.

𝑏𝑗 = 𝐗𝑗
′𝐗𝑗

−1
𝐗𝑗

′𝐲

𝑏𝑗  =
1

𝑛
𝐗𝑗

′𝐲

Assuming 𝐗 has been standardised with column 
mean zero and variance one, then

𝐗𝑗
′𝐗𝑗 = 𝑛𝑉𝑎𝑟 𝐗𝑗 = 𝑛

And

Note that it has the inner product of the SNP genotypes and the phenotypes.

Sumstats for PGS prediction
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Linkage disequilibrium (LD) correlations

Usually obtained from a reference population

LD correlation matrix

𝐑 =
1

𝑛
𝐗′𝐗 

assuming 𝐗 is standardised 
with mean zero and 

variance one

LD matrix for PGS prediction



50

Gibbs sampling

Full conditional distribution for 𝛽𝑗, if in a nonzero dist’n, 

𝑓 𝛽𝑗  𝐛, 𝑒𝑙𝑠𝑒) = 𝑁
𝑟𝑗

𝐶𝑗
,
𝜎𝑒

2

𝐶𝑗

where

Individual-level data

𝑟𝑗 = 𝐗𝑗
′ 𝐲 − ෍

𝑘≠𝑗
𝐗𝑘𝛽𝑘

𝐶𝑗 = 𝐗𝑗
′𝐗𝑗 +

𝜎𝑒
2

𝛾𝑗𝜎𝛽
2

Summary-level data

𝑟𝑗 = 𝑛𝑏𝑗 − ෍
𝑘≠𝑗

𝑛𝑅𝑗𝑘𝛽𝑘  

𝐶𝑗 = 𝑛 +
𝜎𝑒

2

𝛾𝑗𝜎𝛽
2

Compare BayesR and SBayesR algorithms
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All X’y and X’X can be replaced by nb and nR

Lloyd-Jones et al. 2019 Nat Comm, Supplementary Note

Compare BayesR and SBayesR algorithms
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From individual- to summary-level model

Consider an individual-data model with a standardised genotype 

matrix X:

𝐲 = 𝐗𝜷 + 𝐞

Multiply both sides by 
1

𝑛
𝐗′ gives

1

𝑛
𝐗′𝐲 =

1

𝑛
𝐗′𝐗𝜷 +

1

𝑛
𝐗′𝐞

𝐛 = 𝐑 𝜷 𝝐+

LD correlation matrix

𝑉𝑎𝑟 𝝐 =
1

𝑛
𝐑𝜎𝑒

2

GWAS marginal SNP effects
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• In principle, SBayes and Bayes are equivalent methods when same 

data are used (𝐗′𝐲 and 𝐗′𝐗 are sufficient statistics).

• However, when LD is estimated from a reference sample, SBayes is 

only an approximation to Bayes.

• Whether the difference is negligible depends on the heterogeneity 

in LD between the GWAS and LD ref samples.

Potential issue
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LD reference population matches with GWAS population in genetics

• No systematic differences in LD → same ancestry

• Minimum sampling variance in LD → LD ref sample size cannot be too small

Failure to meet this assumption can result in a convergence issue!

Assumptions regarding LD reference
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GWAS marginal effect size vs. Estimated joint effect size

Presence of large effectsMost common

Always good to check SNP effect estimates

Bad convergence! 

J
o
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e
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s

GWAS marginal effects GWAS marginal effects
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GWAS marginal effects



• Run multiple MCMC chains with different starting values

• e.g., LDpred2

• Force an (ad hoc) minimum strong shrinkage to SNP effects

• e.g., PRS-CS

• Regulate LD matrices

• e.g., SBayesR uses chromosome-wide shrunk LD matrices

• e.g., SBayesRC uses eigen-decomposed matrices from LD blocks

How do different methods handle this issue?

56

𝑁
𝐗𝑗

′(𝐲 − 𝟏𝐧𝜇 − σ𝑘≠𝑗 𝐗𝑘
′ 𝛽𝑘)

𝐗𝑗
′𝐗𝑗 + 𝜎𝑒

2/𝜎𝛽
2 , 𝜎𝑒

2/ 𝐗𝑗
′𝐗𝑗 + 𝜎𝑒

2/𝜎𝛽
2

the shrinkage parameter is set to be greater than a threshold value
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𝚲−
1
2𝐔′𝐛 =  𝚲

1
2 𝐔′ 𝜷 +  𝚲−

1
2𝐔′𝝐

Eigen-decomposition

𝐔 𝚲 𝐔′

𝐛 =  𝐑 𝜷 +  𝝐

ResidualsGWAS SNP marginal effects LD correlation matrix SNP joint effects

Var 𝝐 ∝

𝐰 = 𝐐 𝜷 𝜺+

Var 𝜺 ∝

Low-rank model (fits 7M SNPs or more)

It only requires the top 20% 

PCs to explain 99.5% of the 

variance in LD!

In each quasi-independent LD block:



Practical Exercise Part 2: SBayesR

https://gctbhub.cloud.edu.au/data/teaching/ 
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https://gctbhub.cloud.edu.au/data/teaching/
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Incorporating functional genomic annotations



CRICOS code 00025B

Functional genomic annotations provide orthogonal information useful for polygenic 
prediction.

• Chromatin states

• Biological functions

• Molecular quantitative trait loci (xQTL)

• ……

Functional genomic annotations

60
Image from ENCODE



CRICOS code 00025B

Functional genomic annotations provide orthogonal information useful for polygenic 
prediction.

• Chromatin states

• Biological functions

• Molecular quantitative trait loci (xQTL)

• ……

Functional genomic annotations

61
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Zeng et al 2021 Nature Communications



CRICOS code 00025B

Functional annotations are informative on both the presence of causal variants and the 
distribution of causal effect sizes.

62

Anno 1 Anno 2 Anno 3

0
.0

0
.2

0
.4

0
.6

0
.8

Proportion of SNPs

Proportion of causal variants
Anno 1

Anno 2

Anno 3

Differences in distribution of 

causal effects

Differences in proportion of 

causal variants

Opportunities/challenges
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LDpred-funct

AnnoPred

P+T-funct-LASSO

BayesRC

Literature

PolyPred
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Gaps

Need new method that can 

• simultaneously fit all SNPs and annotation data in a 

unified model

• account for variations in both causal variant proportion 

and causal effect distribution

Leveraging functional annotations 
for cross-ancestry prediction
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SNP annotations

SBayesRC

𝛽𝑗  ~ 𝜋1  + 𝜋2             + 𝜋3             + 𝜋4 + 𝜋5

Incorporate functional annotations through a hierarchical prior:

𝑝𝑟𝑜𝑏𝑖𝑡 𝜋𝑗𝑘 = ×  annotation effects

Zero

effect

Tiny

effect

Medium

effect

Small

effect

Large

effect

SNP j
𝜋𝑗𝑘
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SNP annotations

SBayesRC

𝛽𝑗  ~ 𝜋1  + 𝜋2             + 𝜋3             + 𝜋4 + 𝜋5

Incorporate functional annotations through a hierarchical prior:

Assumption

• Annotation effects are additive at 
the GLM scale.

Pros

• Estimation of conditional effects.

• Allow annotation overlap.

• Interpretation.

Cons

• # annotation effect parameters x 5.

• 𝜋𝑗1 + 𝜋𝑗2+ 𝜋𝑗3+ 𝜋𝑗4 + 𝜋𝑗5 = 1.

𝑝𝑟𝑜𝑏𝑖𝑡 𝜋𝑗𝑘 = ×  annotation effects



CRICOS code 00025B

• A set of 2-component independent models:

• For all SNPs

• For SNPs with nonzero effects (conditional on non-null SNPs)

• For SNPs with at least medium effects (conditional on non-small-effect SNPs)

Suppose 4 components for simplicity

67

(1 − 𝑝2) + 𝑝2𝛽𝑗 ~

(1 − 𝑝3) + 𝑝3𝛽𝑗 ~

(1 − 𝑝4) + 𝑝4𝛽𝑗 ~

Reparameterisation of annotation effects

𝑝2, 𝑝3, 𝑝4 are 

independent!



CRICOS code 00025B

• Probit link function:

Φ−1 𝑝 = ෍ SNP annotation ×  annotation effect

     where Φ is the CDF of the standard normal distribution. 

• It is straightforward to compute  𝑝 = Φ ∙

     and  𝜋1 = 1 − 𝑝2;  𝜋2 = 1 − 𝑝3 𝑝2;  𝜋3 = 1 − 𝑝4 𝑝3𝑝2;  𝜋4 = 𝑝2𝑝3𝑝4

• Assume a normal prior distribution for each annotation effect. 

• Gibbs sampling for all parameters.

68

Reparameterisation of annotation effects



CRICOS code 00025B

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS

69

Trans-ancestry prediction

17%

PRS-CSx

How important is functional 

annotation data compare to 

another GWAS dataset from 

the target ancestry?
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Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS

70

Trans-ancestry prediction

17%

16%
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Trans-ancestry prediction

17%

16%

33%

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS



Practical Exercise Part 3: SBayesRC

https://gctbhub.cloud.edu.au/data/teaching/ 
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https://gctbhub.cloud.edu.au/data/teaching/
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Summary and challenges



• PGS are imperfect genetic predictors with inherently limited accuracy.

• Being improved with more data and better methods.

• Bayesian approach allows us to incorporate prior knowledge in estimation of SNP 
effects.

• State-of-the-art Bayesian methods utilize GWAS summary statistics, which unleash 
the power of large GWAS sample size but may encounter convergence issue. 

• Different methods mainly differ in prior assumption and implementation.

• Functional annotations with genome coverage provide orthogonal information to 
GWAS data and therefore boost prediction accuracy.

Summary

74



Ancestry

Predicted into Japanese Predicted into European

75



Ancestry

Issues

• Same causal variants

• Different allele frequencies

• LD differences

• Different effect sizes

• Different causal variants

• GxE

• Different phenotype

In general:

We expect common causal 

variants to be shared across 

ancestries

But correlation structure differs

76



What is the maximum prediction accuracy we can get?

𝐶 ≈
𝑚

𝑁ℎ𝑚
2

ℎ𝑚
2  : True variance explained by the predictor 

depends on the SNP set - subscript m. 

C: captures the error in estimation

As C→ 0, 𝑅2 → ℎ𝑚
2  

We want C to be as small as possible:
• C decreases as Discovery sample N  increases

• C decreases as the number of  SNPs in the SNP set m decreases

As m gets smaller, ℎ𝑚
2  also gets smaller

How to optimise m and ℎ𝑚
2  to get max 𝑅2 ?

𝑅2 =
ℎ𝑚

2

1 + 𝐶
Variance explained by 

the predictor

Wray et al (2019) Complex trait prediction from genome data. Genetics 77



How about whole genome sequencing?

78

With whole genome sequencing the variance captured by 
all measured SNPs will increase

But the number of SNPs that we have estimate effect sizes 
for increases much more

𝒉𝑴
𝟐

M

?
Wray et al (2019) Complex trait prediction from genome data. Genetics

𝑅2 ≈
ℎ𝑚

2

1 +
𝑚

𝑁ℎ𝑚
2

𝑅2

Maximum depends on 
maximising ℎ𝑚

2

We use GWAS data so the 
maximum ℎ𝑚

2  is the SNP-based 
heritability

Theoretical maximum depends 
on the heritability of the trait

Need MASSIVE discovery sample sizes for WGS associations

Also… rare variants are less likely to be shared across populations

78
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Reference

BayesA, BayesB: BayesC: 

BayesR:

SBayesR: SBayesRC:

LDpred2:

MegaPRS:

PRS-CS:
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